

Introducing Adafruit Feather RP2040
Created by Kattni Rembor

https://learn.adafruit.com/adafruit-feather-rp2040-pico

Last updated on 2023-05-16 06:52:33 PM EDT

©Adafruit Industries Page 1 of 146

7

13

23

32

36

40

42

47

Table of Contents

Overview

Pinouts

• Power Pins and Connections

• Logic Pins

• GPIO Pins by Pin Functionality

• Microcontroller and Flash

• Buttons and RST Pin

• LEDs

• STEMMA QT

• Debug Interfaces

Assembly

• Header Options!

• Soldering in Plain Headers

• Prepare the header strip:

• Add the breakout board:

• And Solder!

• Soldering on Female Header

• Tape In Place

• Flip & Tack Solder

• And Solder!

Power Management

• Battery + USB Power

• Power Supplies

• Measuring Battery

• ENable pin

• Alternative Power Options

Install CircuitPython

• CircuitPython Quickstart

• Safe Mode

• Flash Resetting UF2

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

©Adafruit Industries Page 2 of 146

50

53

57

63

73

79

88

92

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

• Unsupported Hardware

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

©Adafruit Industries Page 3 of 146

94

112

112

114

117

122

124

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

CircuitPython Essentials

Blink

• LED Location

• Blinking an LED

Digital Input

• LED and Button

• Controlling the LED with a Button

Built-In NeoPixel LED

• NeoPixel Location

• NeoPixel Color and Brightness

• RGB LED Colors

• NeoPixel Rainbow

CPU Temperature

• Microcontroller Location

• Reading the Microcontroller Temperature

Arduino IDE Setup

• Arduino IDE Download

• Adding the Philhower Board Manager URL

• Add Board Support Package

• Choose Your Board

©Adafruit Industries Page 4 of 146

127

129

138

143

143

Arduino Usage

• RP2040 Arduino Pins

• Choose Your Board

• Load the Blink Sketch

• Manually Enter the Bootloader

Blink

• Pre-Flight Check: Get Arduino IDE & Hardware Set Up

• Start up Arduino IDE and Select Board/Port

• New Blink Sketch

• Verify (Compile) Sketch

• Upload Sketch

• Native USB and manual bootloading

• Enter Manual Bootload Mode

• Finally, a Blink!

I2C Scan Test

• Common I2C Connectivity Issues

• Perform an I2C scan!

• Wiring the MCP9808

FAQ

Downloads

• Files:

• Schematic and Fab Print

• Schematic and Fab Print Original Version

• 3D Model

©Adafruit Industries Page 5 of 146

©Adafruit Industries Page 6 of 146

Overview

A new chip means a new Feather, and the Raspberry Pi RP2040 is no exception.

When we saw this chip we thought "this chip is going to be awesome when we give it

the Feather Treatment" and so we did! This Feather features the RP2040, and all

niceties you know and love about Feather

Measures 2.0" x 0.9" x 0.28" (50.8mm x 22.8mm x 7mm) without headers

soldered in

Light as a (large?) feather - 5 grams

•

•

©Adafruit Industries Page 7 of 146

RP2040 32-bit Cortex M0+ dual core running at ~125 MHz @ 3.3V logic and

power

264 KB RAM

8 MB SPI FLASH chip for storing files and CircuitPython/MicroPython code

storage. No EEPROM

Tons of GPIO! 21 x GPIO pins with following capabilities:

Four 12 bit ADCs (one more than Pico)

Two I2C, Two SPI and two UART peripherals, we label one for the 'main'

interface in standard Feather locations

16 x PWM outputs - for servos, LEDs, etc

The 8 digital 'non-ADC/non-peripheral' GPIO are consecutive for maximum

PIO compatibility

Built in 200mA lipoly charger with charging status indicator LED

Pin #13 red LED for general purpose blinking

RGB NeoPixel

On-board STEMMA QT connector that lets you quickly connect any Qwiic,

STEMMA QT or Grove I2C devices with no soldering!

Both Reset button and Bootloader select button for quick restarts (no

unplugging-replugging to relaunch code)

3.3V Power/enable pin

Optional SWD debug port can be soldered in for debug access ()

4 mounting holes

12 MHz crystal for perfect timing.

3.3V regulator with 500mA peak current output

USB Type C connector lets you access built-in ROM USB bootloader and serial

port debugging

•

•

•

•

◦

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 146

https://www.adafruit.com/product/752

Inside the RP2040 is a 'permanent ROM' USB UF2 bootloader. What that means is

when you want to program new firmware, you can hold down the BOOTSEL button

while plugging it into USB (or pulling down the RUN/Reset pin to ground) and it will

appear as a USB disk drive you can drag the firmware onto. Folks who have been

using Adafruit products will find this very familiar - we use the technique on all our

native-USB boards. Just note you don't double-click reset, instead hold down

BOOTSEL during boot to enter the bootloader!

The RP2040 is a powerful chip, which has the clock speed of our M4 (SAMD51), and

two cores that are equivalent to our M0 (SAMD21). Since it is an M0 chip, it does not

have a floating point unit, or DSP hardware support - so if you're doing something

with heavy floating-point math, it will be done in software and thus not as fast as an

M4. For many other computational tasks, you'll get close-to-M4 speeds!

For peripherals, there are two I2C controllers, two SPI controllers, and two UARTs that

are multiplexed across the GPIO - check the pinout for what pins can be set to which.

There are 16 PWM channels, each pin has a channel it can be set to (ditto on the

pinout).

You'll note there's no I2S peripheral, or SDIO, or camera, what's up with that? Well

instead of having specific hardware support for serial-data-like peripherals like these,

the RP2040 comes with the PIO state machine system which is a unique and powerful

way to create custom hardware logic and data processing blocks that run on their

own without taking up a CPU. For example, NeoPixels - often we bitbang the timing-

specific protocol for these LEDs. For the RP2040, we instead use PIO object that

reads in the data buffer and clocks out the right bitstream with perfect accuracy. Sam

e with I2S audio in or out, LED matrix displays, 8-bit or SPI based TFTs, even VGA ()! In

©Adafruit Industries Page 9 of 146

https://github.com/raspberrypi/pico-examples/tree/master/pio
https://github.com/raspberrypi/pico-examples/tree/master/pio

MicroPython and CircuitPython you can create PIO control commands to script the

peripheral and load it in at runtime. There are 2 PIO peripherals with 4 state machines

each.

There is great C/C++ support (), Arduino support (), an official MicroPython port (), and

a CircuitPython port ()! We of course recommend CircuitPython because we think it's

the easiest way to get started () and it has support with most of our drivers, displays,

sensors, and more, supported out of the box so you can follow along with our

CircuitPython projects and tutorials.

While the RP2040 has lots of onboard RAM (264KB), it does not have built-in FLASH

memory. Instead, that is provided by the external QSPI flash chip. On this board there

is 8 MB, which is shared between the program it's running and any file storage used

by MicroPython or CircuitPython. When using C/C++ you get the whole flash memory,

if using Python you will have about 7 MB remaining for code, files, images, fonts, etc.

©Adafruit Industries Page 10 of 146

https://github.com/raspberrypi/pico-sdk
https://github.com/earlephilhower/arduino-pico
https://github.com/micropython/micropython
https://circuitpython.org/downloads
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython

RP2040 Chip features:

Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

30 GPIO pins, 4 of which can be used as analog inputs

Peripherals

2 UARTs

2 SPI controllers

2 I2C controllers

16 PWM channels

USB 1.1 controller and PHY, with host and device support

8 PIO state machines

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

©Adafruit Industries Page 11 of 146

Comes fully assembled and tested, with the UF2 USB bootloader. We also toss in

some header, so you can solder it in and plug it into a solderless breadboard.

As of November 28, 2022 – we've updated this Feather with a right-angle tactile

button for the Bootloader switch, so that you can press it even when a 'wing is on the

Feather. We have also connected the boot button to GPIO #4 so it can be used as a

user-input button.

©Adafruit Industries Page 12 of 146

Pinouts

The Feather RP2040 has many pins, ports and features. This page takes you on a tour

of the board!

PrettyPins PDF on GitHub ().

©Adafruit Industries Page 13 of 146

https://github.com/adafruit/Adafruit-Feather-RP2040-PCB/blob/main/Adafruit%20Feather%20RP2040%20pinout.pdf

Power Pins and Connections

USB C connector - This is used for power and data. Connect to your computer

via a USB C cable to update firmware and edit code.

LiPoly Battery connector - This 2-pin JST PH connector allows you to plug in

lipoly batteries to power the Feather. The Feather is also capable of charging

batteries plugged into this port via USB.

GND - This is the common ground for all power and logic.

BAT - This is the positive voltage to/from the 2-pin JST jack for the optional

Lipoly battery.

USB - This is the positive voltage to/from the USB C jack, if USB is connected.

EN - This is the 3.3V regulator's enable pin. It's pulled up, so connect to ground

to disable the 3.3V regulator.

3.3V - These pins are the output from the 3.3V regulator, they can supply

500mA peak.

Logic Pins

•

•

•

•

•

•

•

©Adafruit Industries Page 14 of 146

I2C and SPI on RP2040

The RP2040 is capable of handling I2C, SPI and UART on many pins. However, there

are really only two peripherals each of I2C, SPI and UART: I2C0 and I2C1, SPI0 and

SPI1, and UART0 and UART1. So while many pins are capable of I2C, SPI and UART,

you can only do two at a time, and only on separate peripherals, 0 and 1. I2C, SPI and

UART peripherals are included and numbered below.

PWM on RP2040

The RP2040 supports PWM on all pins. However, it is not capable of PWM on all pins

at the same time. There are 8 PWM "slices", each with two outputs, A and B. Each pin

on the Feather is assigned a PWM slice and output. For example, A0 is PWM5 A,

which means it is first output of the fifth slice. You can have up to 16 PWM objects on

the Feather RP2040. The important thing to know is that you cannot use the same

slice and output more than once at the same time. So, if you have a PWM object on

pin A0, you cannot also put a PWM object on D10, because they are both PWM5 A.

The PWM slices and outputs are indicated below. Note that PWM7 A and PWM7 B are

not available on the Feather RP2040 because not all pins are broken out.

Analog Pins

The RP2040 has four ADCs. These pins are the only pins capable of handling analog,

and they can also do digital.

A0/GP26 - This pin is ADC0. It is also SPI1 SCK, I2C1 SDA and PWM5 A.

A1/GP27 - This pin is ADC1. It is also SPI1 MOSI, I2C1 SCL and PWM5 B.

A2/GP28 - This pin is ADC2. It is also SPI1 MISO, I2C1 SDA and PWM6 A.

A3/GP29 - This pin is ADC3. It is also SPI1 CS, I2C0 SCL and PWM6 B.

•

•

•

•

©Adafruit Industries Page 15 of 146

Digital Pins

These are the digital I/O pins. They all have multiple capabilities.

D24/GP24 - Digital I/O pin 24. It is also UART1 TX, I2C0 SDA, and PWM4 A.

D25/GP25 - Digital I/O pin 25. It is also UART1 RX, I2C0 SCL, and PWM4 B.

SCK/GP18 - The main SPI0 SCK. It is also I2C1 SDA and PWM1 A.

MO/GP19 - The main SPI0 MOSI. It is also I2C1 SCL and PWM1 B.

MI/GP20 - The main SPI0 MISO. It is also UART1 TX, I2C0 SDA and PWM2 A.

RX/GP01 - The main UART0 RX pin. It is also I2C0 SDA, SPI0 CS and PWM0 B.

TX/GP00 - The main UART0 TX pin. It is also I2C0 SCL, SPI0 MISO and PWM0 A.

D4/GP06 - Digital I/O pin 4. It is also SPI0 SCK, I2C1 SDA and PWM3 A.

D13/GP13 - Digital I/O pin 13. It is also SPI1 CS, UART0 RX, I2C0 SCL and PWM6

B.

D12/GP12 - Digital I/O pin 12. It is also SPI1 MISO, UART0 TX, I2C0 SDA and

PWM6 A.

D11/GP11 - Digital I/O pin 11. It is also SPI1 MOSI, I2C1 SCL and PWM5 B.

D10/GP10 - Digital I/O pin 10. It is also SPI1 SCK, I2C1 SDA and PWM5 A.

D9/GP09 - Digital I/O pin 9. It is also SPI1 CS, UART1 RX, I2C0 SCL and PWM4 B.

D6/GP08 - Digital I/O pin 6. It is also SPI1 MISO, UART1 TX, I2C0 SDA and PWM4

A.

D5/GP07 - Digital I/O pin 5. It is also SPI0 MOSI, I2C1 SCL and PWM3 B.

SCL/GP03 - The main I2C1 clock pin. It is also SPI0 MOSI, I2C1 SCL and PWM1 B.

SDA/GP02 - The main I2C1 data pin. It is also SPI0 SCK, I2C1 SDA and PWM1 A.

CircuitPython Pins vs GPxx Pins

There are pin labels on both sides of the Feather RP2040. Which should you use? In

CircuitPython, use the pin labels on the top of the board (such as A0, D4, SCL, RX,

etc.). If you're looking to work with this board and the RP2040 SDK, use the pin labels

on the bottom of the board (GP00 and GP01, etc.).

CircuitPython I2C, SPI and UART

Note that in CircuitPython, there is a board object each for I2C, SPI and UART that use

the pins labeled on the Feather. You can use these objects to initialise these

peripherals in your code.

board.STEMMA_I2C() uses SCL/SDA

board.SPI() uses SCK/MO/MI

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 146

board.UART() uses RX/TX

GPIO Pins by Pin Functionality

Primary pins based on Feather RP2040 silk are bold.

I2C Pins

I2C0 SCL: A3, D25, RX, D13, D9

I2C0 SDA: A2, D24, MISO, TX, D12, D6

I2C1 SCL: SCL, A1, MOSI, D11, D5

I2C1 SDA: SDA, A0, SCK, D4, D10

SPI Pins

SPI0 SCK: SCK, D4, SDA

SPI0 MOSI: MOSI, D5, SCL

SPI0 MISO: MISO, TX

SPI0 CS: RX

SPI1 SCK: A0, D10

SPI1 MOSI: A1, D11

SPI1 MISO: A2, D24, D12, D6

SPI1 CS: A3, D25, D13, D9

UART Pins

UART0 TX: TX, A2, D12

UART0 RX: RX, A3, D13

UART1 TX: D24, MISO, D6

UART1 RX: D25, D9

PWM Pins

PWM0 A: TX

PWM0 B: RX

PWM1 A: SCK, SDA

PWM1 B: MOSI, SCL

PWM2 A: MISO

PWM2 B: (none)

PWM3 A: D4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 17 of 146

PWM3 B: D5

PWM4 A: D24, D6

PWM4 B: D25, D9

PWM5 A: A0, D10

PWM5 B: A1, D11

PWM6 A: A2, D12

PWM6 B: A3, D13

Microcontroller and Flash

The square towards the middle is the RP2040 microcontroller, the "brains" of the

Feather RP2040 board.

The square near the BOOTSEL button is the QSPI Flash. It is connected to 6 pins that

are not brought out on the GPIO pads. This way you don't have to worry about the SPI

flash colliding with other devices on the main SPI connection.

QSPI is neat because it allows you to have 4 data in/out lines instead of just SPI's

single line in and single line out. This means that QSPI is at least 4 times faster. But in

reality is at least 10x faster because you can clock the QSPI peripheral much faster

than a plain SPI peripheral

•

•

•

•

•

•

•

©Adafruit Industries Page 18 of 146

Buttons and RST Pin

The Feather RP2040 has two buttons.

The BOOTSEL used to enter the bootloader. To enter the bootloader, press and hold

BOOTSEL and then power up the board (either by plugging it into USB or pressing

RESET). The bootloader is used to install/update CircuitPython.

On Revision D and later of the Feather RP2040, the BOOTSEL button is connected to

GPIO4 for use in your code. The revision letter is in a circle on the bottom of the

board.

The RESET button restarts the board and helps enter the bootloader. You can click it

to reset the board without unplugging the USB cable or battery.

The RST pin is can be used to reset the board. Tie to ground manually to reset the

board.

LEDs

©Adafruit Industries Page 19 of 146

Above the pin labels for A0 and A1 is the status NeoPixel LED. In CircuitPython, the

NeoPixel is board.NEOPIXEL and the library for it is here () and in the bundle (). The

NeoPixel is powered by the 3.3V power supply but that hasn't shown to make a big

difference in brightness or color. In CircuitPython, the LED is used to indicate the

runtime status.

Below the USB C connector is the CHG LED. This indicates the charge status of a

connected lipoly battery, if one is present and USB is connected. It is amber while

charging, and green when fully charged. Note, it's normal for this LED to flicker when

no battery is in place, that's the charge circuitry trying to detect whether a battery is

there or not.

Above the USB C connector is the D13 LED. This little red LED is controllable in

CircuitPython code using board.LED . Also, this LED will pulse when the board is in

bootloader mode.

STEMMA QT

The Feather RP2040 comes with a built in STEMMA QT connector! This means you

can connect up all sorts of I2C sensors and breakouts (), no soldering required! This

connector uses the SCL and SDA pins for I2C, which ends up being the RP2040's I2C1

peripheral. In CircuitPython, you can use the STEMMA connector with board.SCL an

d board.SDA , or board.STEMMA_I2C() . In Arduino it is Wire1 .

©Adafruit Industries Page 20 of 146

https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel/releases
https://circuitpython.org/libraries
https://www.adafruit.com/?q=stemma+qt

STEMMA QT / Qwiic JST SH 4-pin Cable -

100mm Long

This 4-wire cable is a little over 100mm /

4" long and fitted with JST-SH female 4-

pin connectors on both ends. Compared

with the chunkier JST-PH these are 1mm

pitch instead of...

https://www.adafruit.com/product/4210

Debug Interfaces

For advanced debugging or to reprogram your Feather RP2040, there is a footprint to

solder a 2*5 pin 0.05" standard SWD header on the board. The image above shows

the "pin 1" location by marking it with a triangle. This orientation places the connector

key facing towards the end of the board where the USB connector is. This allows you

to use something like a Segger J-Link () and a 1.27mm SWD cable () to connect from

your PC to the Feather.

©Adafruit Industries Page 21 of 146

https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/1675

On the back of the board are pads for the SWCLK and SWDIO pins. They provide

access to the internal Serial Wire Debug multi-drop bus, which provides debug access

to both processors, and can be used to download code.

Mini SWD 0.05" Pitch Connector - 10 Pin

SMT Box Header

We've carrying a new 1.27mm pitch

2x5 Mini SWD 0.05" Pitch Connector. It's a

tinier, bite-sized version of the

https://www.adafruit.com/product/4048

©Adafruit Industries Page 22 of 146

https://www.adafruit.com/product/4048
https://www.adafruit.com/product/4048
https://www.adafruit.com/product/4048

SWD 0.05" Pitch Connector - 10 Pin SMT

Box Header

This 1.27mm pitch, 2x5 male SMT Box

Header is the same one used on our SWD

Cable Breakout Board. The header...

https://www.adafruit.com/product/752

Assembly

We ship Feathers fully tested but without headers attached - this gives you the most

flexibility on choosing how to use and configure your Feather

Header Options!

Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male

headers, this lets you plug in the Feather

into a solderless breadboard

©Adafruit Industries Page 23 of 146

https://www.adafruit.com/product/752
https://www.adafruit.com/product/752
https://www.adafruit.com/product/752
https://learn.adafruit.com//assets/30192
https://learn.adafruit.com//assets/30192
https://learn.adafruit.com//assets/30201
https://learn.adafruit.com//assets/30201

Another option is to go with socket female

headers. This won't let you plug the

Feather into a breadboard but it will let

you attach featherwings very easily

A few Feather boards require access to

top-side components like buttons or

connectors, making stacking impractical.

Sometimes you can stack in the opposite

order—FeatherWing underneath—or, if

both Feather and Wing require top-side

access, place the boards side-by-side with

a FeatherWing Doubler () or Tripler ().

©Adafruit Industries Page 24 of 146

https://learn.adafruit.com//assets/30195
https://learn.adafruit.com//assets/30195
https://learn.adafruit.com//assets/30196
https://learn.adafruit.com//assets/30196
https://learn.adafruit.com//assets/117300
https://learn.adafruit.com//assets/117300
https://www.adafruit.com/product/2890
https://www.adafruit.com/product/3417

We also have 'slim' versions of the female

headers, that are a little shorter and give a

more compact shape

©Adafruit Industries Page 25 of 146

https://learn.adafruit.com//assets/30197
https://learn.adafruit.com//assets/30197
https://learn.adafruit.com//assets/30198
https://learn.adafruit.com//assets/30198

Finally, there's the "Stacking Header"

option. This one is sort of the best-of-both-

worlds. You get the ability to plug into a

solderless breadboard and plug a

featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

©Adafruit Industries Page 26 of 146

https://learn.adafruit.com//assets/30199
https://learn.adafruit.com//assets/30199
https://learn.adafruit.com//assets/30200
https://learn.adafruit.com//assets/30200
https://learn.adafruit.com//assets/30183
https://learn.adafruit.com//assets/30183

Add the breakout board:
Place the breakout board over the pins so

that the short pins poke through the

breakout pads

And Solder!
Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 27 of 146

https://learn.adafruit.com//assets/30184
https://learn.adafruit.com//assets/30184
https://learn.adafruit.com//assets/30185
https://learn.adafruit.com//assets/30185
https://learn.adafruit.com//assets/30186
https://learn.adafruit.com//assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

©Adafruit Industries Page 28 of 146

https://learn.adafruit.com//assets/30187
https://learn.adafruit.com//assets/30187
https://learn.adafruit.com//assets/30188
https://learn.adafruit.com//assets/30188
https://learn.adafruit.com//assets/30189
https://learn.adafruit.com//assets/30189

You're done! Check your solder joints

visually and continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in

place so when you flip over the board they

don't fall out

©Adafruit Industries Page 29 of 146

https://learn.adafruit.com//assets/30190
https://learn.adafruit.com//assets/30190
https://learn.adafruit.com//assets/30203
https://learn.adafruit.com//assets/30203

Flip & Tack Solder
After flipping over, solder one or two

points on each strip, to 'tack' the header in

place

©Adafruit Industries Page 30 of 146

https://learn.adafruit.com//assets/30204
https://learn.adafruit.com//assets/30204
https://learn.adafruit.com//assets/30205
https://learn.adafruit.com//assets/30205
https://learn.adafruit.com//assets/30206
https://learn.adafruit.com//assets/30206

And Solder!
Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 31 of 146

https://learn.adafruit.com//assets/30207
https://learn.adafruit.com//assets/30207
https://learn.adafruit.com//assets/30208
https://learn.adafruit.com//assets/30208
https://learn.adafruit.com//assets/30209
https://learn.adafruit.com//assets/30209
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints

visually and continue onto the next steps

Power Management

©Adafruit Industries Page 32 of 146

https://learn.adafruit.com//assets/30210
https://learn.adafruit.com//assets/30210
https://learn.adafruit.com//assets/30211
https://learn.adafruit.com//assets/30211

Battery + USB Power

We wanted to make our Feather boards easy to power both when connected to a

computer as well as via battery.

There's two ways to power a Feather:

You can connect with a USB cable (just plug into the jack) and the Feather will

regulate the 5V USB down to 3.3V.

You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or Lithium Ion

(LiIon) battery to the JST jack. This will let the Feather run on a rechargeable

battery.

When the USB power is powered, it will automatically switch over to USB for power,

as well as start charging the battery (if attached). This happens 'hot-swap' style so you

can always keep the LiPoly connected as a 'backup' power that will only get used

when USB power is lost.

The above shows the USB-C jack (left), LiPoly JST jack (top left), as well as the

changeover diode (just to the right of the JST jack) and the LiPoly charging circuitry

(to the right of the JST jack).

There's also a CHG LED next to the USB jack, which will light up while the battery is

charging. This LED might also flicker if the battery is not connected, it's normal.

1.

2.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using wrong

polarity batteries can destroy your Feather. Many customers try to save money

by purchasing Lipoly batteries from Amazon only to find that they plug them in

and the Feather is destroyed!

©Adafruit Industries Page 33 of 146

Power Supplies

You have a lot of power supply options here! We bring out the BAT pin, which is tied

to the LiPoly JST connector, as well as USB which is the +5V from USB if connected.

We also have the 3V pin which has the output from the 3.3V regulator. We use a

500mA peak regulator. While you can get 500mA from it, you can't do it continuously

from 5V as it will overheat the regulator.

It's fine for, say, powering an ESP8266 WiFi chip or XBee radio though, since the

current draw is 'spikey' & sporadic.

Measuring Battery

If you're running off of a battery, chances are you wanna know what the voltage is at!

That way you can tell when the battery needs recharging. LiPoly batteries are 'maxed

out' at 4.2V and stick around 3.7V for much of the battery life, then slowly sink down

to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you

can quickly tell when you're heading below 3.7V.

Note that unlike other Feathers, we do not have an ADC connected to a battery

monitor. Reason being there's only 4 ADCs and we didn't want to use one precious

ADC for a battery monitor. You can create a resistor divider from BAT to GND with two

10K resistors and connect the middle to one of the ADC pins on a breadboard.

The charge LED is automatically driven by the LiPoly charger circuit. It will try to

detect a battery and is expecting one to be attached. If there isn't one it may

flicker once in a while when you use power because it's trying to charge a (non-

existent) battery. It's not harmful, and it's totally normal!

©Adafruit Industries Page 34 of 146

ENable pin

If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply

tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will

still be powered.

Alternative Power Options

The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into

the JST port or a USB power cable.

If you need other ways to power the Feather, here's what we recommend:

For permanent installations, a 5V 1A USB wall adapter () will let you plug in a

USB cable for reliable power

For mobile use, where you don't want a LiPoly, use a USB battery pack! ()

If you have a higher voltage power supply, use a 5V buck converter () and wire it

to a USB cable's 5V and GND input ()

Here's what you cannot do:

Do not use alkaline or NiMH batteries and connect to the battery port - this will

destroy the LiPoly charger and there's no way to disable the charger

Do not use 7.4V RC batteries on the battery port - this will destroy the board

•

•

•

•

•

©Adafruit Industries Page 35 of 146

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972

The Feather is not designed for external power supplies - this is a design decision to

make the board compact and low cost. It is not recommended, but technically

possible:

Connect an external 3.3V power supply to the 3V and GND pins. Not

recommended, this may cause unexpected behavior and the EN pin will no

longer work. Also this doesn't provide power on BAT or USB and some

Feathers/Wings use those pins for high current usages. You may end up

damaging your Feather.

Connect an external 5V power supply to the USB and GND pins. Not

recommended, this may cause unexpected behavior when plugging in the USB

port because you will be back-powering the USB port, which could confuse or

damage your computer.

Install CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of

CircuitPython for this board via

circuitpython.org

Click the link above to download the latest

CircuitPython UF2 file.

Save it wherever is convenient for you.

•

•

©Adafruit Industries Page 36 of 146

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_feather_rp2040/
https://learn.adafruit.com//assets/101655
https://learn.adafruit.com//assets/101655

To enter the bootloader, hold down the BOOT/BOOTSEL button (highlighted in red

above), and while continuing to hold it (don't let go!), press and release the reset

button (highlighted in blue above). Continue to hold the BOOT/BOOTSEL button until

the RPI-RP2 drive appears!

If the drive does not appear, release all the buttons, and then repeat the process

above.

You can also start with your board unplugged from USB, press and hold the BOOTSEL

button (highlighted in red above), continue to hold it while plugging it into USB, and

wait for the drive to appear before releasing the button.

A lot of people end up using charge-only USB cables and it is very frustrating! Make

sure you have a USB cable you know is good for data sync.

©Adafruit Industries Page 37 of 146

You will see a new disk drive appear called

RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2 file

to RPI-RP2.

The RPI-RP2 drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Safe Mode

You want to edit your code.py or modify the files on your CIRCUITPY drive, but find

that you can't. Perhaps your board has gotten into a state where CIRCUITPY is read-

only. You may have turned off the CIRCUITPY drive altogether. Whatever the reason,

safe mode can help.

©Adafruit Industries Page 38 of 146

https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101658
https://learn.adafruit.com//assets/101658

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode

To enter safe mode when using CircuitPython, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED (highlighted in green above) will

blink yellow during that time. If you press reset during that 1000ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

If you successfully enter safe mode on CircuitPython, the LED will intermittently blink

yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

Flash Resetting UF2

If your board ever gets into a really weird state and doesn't even show up as a disk

drive when installing CircuitPython, try loading this 'nuke' UF2 which will do a 'deep

©Adafruit Industries Page 39 of 146

clean' on your Flash Memory. You will lose all the files on the board, but at least you'll

be able to revive it! After loading this UF2, follow the steps above to re-install

CircuitPython.

Download flash erasing "nuke" UF2

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

Ubuntu users: Mu currently (checked May 4, 2022) does not install properly on

Ubuntu 22.04. See https://github.com/mu-editor/mu/issues to track this issue.

See https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

and https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-

circuitpython for other editors to use.

©Adafruit Industries Page 40 of 146

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856
https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries Page 41 of 146

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

©Adafruit Industries Page 42 of 146

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 43 of 146

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

Don't click reset or unplug your board!

©Adafruit Industries Page 44 of 146

https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 45 of 146

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

©Adafruit Industries Page 46 of 146

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

©Adafruit Industries Page 47 of 146

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 48 of 146

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

©Adafruit Industries Page 49 of 146

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

©Adafruit Industries Page 50 of 146

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

©Adafruit Industries Page 51 of 146

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

©Adafruit Industries Page 52 of 146

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 53 of 146

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

©Adafruit Industries Page 54 of 146

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

©Adafruit Industries Page 55 of 146

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 56 of 146

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

©Adafruit Industries Page 57 of 146

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board

dir(board)

Here is the output for the QT Py. You may have a different board, and this list will vary,

based on the board.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? () section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

©Adafruit Industries Page 58 of 146

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 59 of 146

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 60 of 146

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

board_pins = []

for pin in dir(microcontroller.pin):

 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append("board.{}".format(alias))

 if len(pins) > 0:

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board.

A0 board.D0 . This means that you can access pin A0 with both board.A0 and

board.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

©Adafruit Industries Page 61 of 146

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(mi

crocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here () and the Python-like modules included here ().

However, not every module is available for every board due to size constraints or

hardware limitations. How do you find out what modules are available for your board?

There are two options for this. You can check the support matrix (), and search for

your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

©Adafruit Industries Page 62 of 146

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 63 of 146

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the

button available.

©Adafruit Industries Page 64 of 146

The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it

will replace all the existing content! If you don't want to lose anything, ensure you

copy your current code to your computer before you copy over the new Project

Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is

specific to Circuit Playground Express, and cannot be used on all boards. Do not

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 65 of 146

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library
Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

©Adafruit Industries Page 66 of 146

https://circuitpython.org/libraries

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

©Adafruit Industries Page 67 of 146

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

•

•

©Adafruit Industries Page 68 of 146

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

•

•

•

©Adafruit Industries Page 69 of 146

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the

help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to

see what modules are available for your board. Then, as you read through the impor

t statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

©Adafruit Industries Page 70 of 146

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

©Adafruit Industries Page 71 of 146

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

©Adafruit Industries Page 72 of 146

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and
Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

©Adafruit Industries Page 73 of 146

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.org
https://www.adafruit.com/product/3000

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

Using Older Versions

I have to continue using CircuitPython 6.x or earlier.
Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle ()

3.x bundle ()

4.x bundle ()

5.x bundle ()

6.x bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

•

©Adafruit Industries Page 74 of 146

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip

Does CircuitPython support long integers, like regular
Python?

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and

time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

How do I do BLE (Bluetooth Low Energy) with
CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

©Adafruit Industries Page 75 of 146

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with
CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 76 of 146

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

My RGB NeoPixel/DotStar LED is blinking funny colors -
what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

©Adafruit Industries Page 77 of 146

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why
not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run
CircuitPython?

No.

©Adafruit Industries Page 78 of 146

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

©Adafruit Industries Page 79 of 146

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

©Adafruit Industries Page 80 of 146

https://adafru.it/discord

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works

for you.

Note the date on the page next to Current Status for:

©Adafruit Industries Page 81 of 146

https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

©Adafruit Industries Page 82 of 146

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

©Adafruit Industries Page 83 of 146

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

©Adafruit Industries Page 84 of 146

https://circuitpython.org/contributing

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

©Adafruit Industries Page 85 of 146

https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://github.com/adafruit/circuitpython/issues

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

©Adafruit Industries Page 86 of 146

https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

©Adafruit Industries Page 87 of 146

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or

Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available ().

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

©Adafruit Industries Page 88 of 146

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

©Adafruit Industries Page 89 of 146

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to

download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you

can try downloading the 32-bit version instead. However, the 64-bit version will work

on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

•

•

•

©Adafruit Industries Page 90 of 146

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 91 of 146

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 92 of 146

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem1

41441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 93 of 146

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 94 of 146

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.
Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

©Adafruit Industries Page 95 of 146

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

©Adafruit Industries Page 96 of 146

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear or
Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

•

©Adafruit Industries Page 97 of 146

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

©Adafruit Industries Page 98 of 146

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

©Adafruit Industries Page 99 of 146

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

•

•

•

©Adafruit Industries Page 100 of 146

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 101 of 146

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

©Adafruit Industries Page 102 of 146

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

©Adafruit Industries Page 103 of 146

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 104 of 146

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

Feather M0 Express

Feather M4 Express

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 105 of 146

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2

Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

©Adafruit Industries Page 106 of 146

https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython () .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

©Adafruit Industries Page 107 of 146

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

©Adafruit Industries Page 108 of 146

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

©Adafruit Industries Page 109 of 146

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 110 of 146

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

©Adafruit Industries Page 111 of 146

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

CircuitPython Essentials

You've been introduced to CircuitPython, and worked through getting everything set

up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along

side the many CircuitPython libraries available. The following pages demonstrate

some of these modules. Each page presents a different concept including a code

example with an explanation. All of the examples are designed to work with your

microcontroller board.

Time to get started learning the CircuitPython essentials!

Blink

In learning any programming language, you often begin with some sort of Hello,

World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the

simplest programs in CircuitPython. It involves three built-in modules, two lines of set

up, and a short loop. Despite its simplicity, it shows you many of the basic concepts

needed for most CircuitPython programs, and provides a solid basis for more complex

projects. Time to get blinky!

©Adafruit Industries Page 112 of 146

LED Location

The built-in LED, indicated by the red box

in the image, is labeled "13", and located

above the USB Type-C connector next to

the JST battery connector.

Blinking an LED

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/blink/ and then click on the directory

that matches the version of CircuitPython you're using and copy the contents of that

directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 113 of 146

https://learn.adafruit.com//assets/100905
https://learn.adafruit.com//assets/100905

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not led.value with a single time.sleep(0.5) . That way is more

difficult to understand if you're new to programming, so the example is a bit longer

than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time , board and digitalio . This makes these

modules available for use in your code. All three are built-in to CircuitPython, so you

don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut() object, provide it the LED pin using the boar

d module, and save it to the variable led . Then, you tell the pin to act as an

OUTPUT .

Finally, you create a while True: loop. This means all the code inside the loop will

repeat indefinitely. Inside the loop, you set led.value = True which powers on the

LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before

moving on to the next line. The next line sets led.value = False which turns the

LED off. Then you use another time.sleep(0.5) to wait half a second before

starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is

controlled by the amount of time you tell the code to wait before moving on using

time.sleep() . The example uses 0.5 , which is one half of one second. Try

increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input

The CircuitPython digitalio module has many applications. The basic Blink

program sets up the LED as a digital output. You can just as easily set up a digital

input such as a button to control the LED. This example builds on the basic Blink

example, but now includes setup for a button switch. Instead of using the time

module to blink the LED, it uses the status of the button switch to control whether the

LED is turned on or off.

©Adafruit Industries Page 114 of 146

LED and Button

Built-in LED:

The built-in red LED (indicated by the

magenta box in the image), labeled 13 on

the silk, is located above the USB

connector.

Button wiring:

One leg of button to Feather GND

Opposite leg of button to Feather A1

If you're unsure of which legs on a button are "opposite", you can guarantee you're

using the proper legs if you connect the wires up to two legs located diagonally

across the button, like in the diagram.

Controlling the LED with a Button

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory Adafruit_Feather_RP2040/digital_input/ and then click on the

directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

#

"""CircuitPython Digital Input example for Feather RP2040"""

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.A1)

©Adafruit Industries Page 115 of 146

https://learn.adafruit.com//assets/101993
https://learn.adafruit.com//assets/101993

button.switch_to_input(pull=digitalio.Pull.UP)

while True:

 if not button.value:

 led.value = True

 else:

 led.value = False

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

Note that the code is a little less "Pythonic" than it could be. It could also be written as

led.value = not button.value . That way is more difficult to understand if you're

new to programming, so the example is a bit longer than it needed to be to make it

easier to read.

First you import two modules: board and digitalio . This makes these modules

available for use in your code. Both are built-in to CircuitPython, so you don't need to

download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must

let the board know where to look for the hardware and what to do with it. So, you

create a digitalio.DigitalInOut() object, provide it the LED pin using the boar

d module, and save it to the variable led . Then, you tell the pin to act as an

OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the

button is an INPUT , and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.

Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

©Adafruit Industries Page 116 of 146

Built-In NeoPixel LED

Your board has a built-in RGB NeoPixel status LED. You can use CircuitPython code to

control the color and brightness of this LED. It is also used to indicate the bootloader

status and errors in your CircuitPython code.

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. It

contains three LEDs - a red one, a green one and a blue one - along side a driver chip

in a tiny package controlled by a single pin. They can be used individually (as in the

built-in LED on your board), or chained together in strips or other creative form

factors. NeoPixels do not light up on their own; they require a microcontroller. So, it's

super convenient that the NeoPixel is built in to your microcontroller board!

This page will cover using CircuitPython to control the status RGB NeoPixel built into

your microcontroller. You'll learn how to change the color and brightness, and how to

make a rainbow. Time to get started!

NeoPixel Location

The NeoPixel LED (indicated by the

magenta box in the image) is located

above the A0 and A1 labels on the silk.

NeoPixel Color and Brightness

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Temp

lates/status_led_one_neopixel_rgb/ and then click on the directory that matches the

©Adafruit Industries Page 117 of 146

https://learn.adafruit.com//assets/101994
https://learn.adafruit.com//assets/101994

version of CircuitPython you're using and copy the contents of that directory to your C

IRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel red, green, blue example."""

import time

import board

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

pixel.brightness = 0.3

while True:

 pixel.fill((255, 0, 0))

 time.sleep(0.5)

 pixel.fill((0, 255, 0))

 time.sleep(0.5)

 pixel.fill((0, 0, 255))

 time.sleep(0.5)

The built-in NeoPixel begins blinking red, then green, then blue, and repeats!

First you import two modules, time and board , and one library, neopixel . This

makes these modules and libraries available for use in your code. The first two are

modules built-in to CircuitPython, so you don't need to download anything to use

©Adafruit Industries Page 118 of 146

those. The neopixel library is separate, which is why you needed to install it before

getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your

code must let the board know where to look for the hardware and what to do with it.

So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin

using the board module, and tell it the number of LEDs. You save this object to the

variable pixel .

Then, you set the NeoPixel brightness using the brightness attribute. brightness

expects float between 0 and 1.0 . A float is essentially a number with a decimal in it.

The brightness value represents a percentage of maximum brightness; 0 is 0% and

1.0 is 100%. Therefore, setting pixel.brightness = 0.3 sets the brightness to

30%. The default brightness, which is to say the brightness if you don't explicitly set it,

is 1.0 . The default is really bright! That is why there is an option available to easily

change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5 seconds, and

blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the section below

for details on RGB colors. The RGB value for red is (255, 0, 0) . Note that the RGB

value includes the parentheses. The fill() attribute expects the full RGB value

including those parentheses. That is why there are two pairs of parentheses in the

code.

You can change the RGB values to change the colors that the NeoPixel cycles

through. Check out the list below for some examples. You can make any color of the

rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in

NeoPixel LED!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the form of an

(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set an LED

to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and

no green or blue. Green would be (0, 255, 0) , etc. For the colors between, you

set a combination, such as cyan which is (0, 255, 255) , with equal amounts of

©Adafruit Industries Page 119 of 146

green and blue. If you increase all values to the same level, you get white! If you

decrease all the values to 0, you turn the LED off.

Common colors include:

red: (255, 0, 0)

green: (0, 255, 0)

blue: (0, 0, 255)

cyan: (0, 255, 255)

purple: (255, 0, 255)

yellow: (255, 255, 0)

white: (255, 255, 255)

black (off): (0, 0, 0)

NeoPixel Rainbow

You should have already installed the library necessary to use the built-in NeoPixel

LED. If not, follow the steps at the beginning of the NeoPixel Color and Brightness

section to install it.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/status_led_one_neopixel_rainbow/

and then click on the directory that matches the version of CircuitPython you're using

and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython status NeoPixel rainbow example."""

import time

import board

from rainbowio import colorwheel

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 120 of 146

pixel.brightness = 0.3

def rainbow(delay):

 for color_value in range(255):

 pixel[0] = colorwheel(color_value)

 time.sleep(delay)

while True:

 rainbow(0.02)

The NeoPixel displays a rainbow cycle!

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you

import colorwheel .

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the rainbow

cycle. It expects a delay in seconds. The higher the number of seconds provided for

delay , the slower the rainbow will cycle. The helper cycles through the values of the

color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by including rai

nbow(0.2) .

That's all there is to making rainbows using the built-in NeoPixel LED!

©Adafruit Industries Page 121 of 146

CPU Temperature

There is a temperature sensor built into the CPU on your microcontroller board. It

reads the internal CPU temperature, which varies depending on how long the board

has been running or how intense your code is.

CircuitPython makes it really simple to read this data from the temperature sensor

built into the microcontroller. Using the built-in microcontroller module, you can

easily read the temperature.

Microcontroller Location

The microcontroller on the Feather

RP2040 is located to the right-center of

the board, nested between the Adafruit

Feather RP2040 label on the silk.

Reading the Microcontroller Temperature

The data is read using two lines of code. All necessary modules are built into

CircuitPython, so you don't need to download any extra files to get started.

Connect to the serial console (), and then update your code.py to the following.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/cpu_temperature/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 122 of 146

https://learn.adafruit.com//assets/101995
https://learn.adafruit.com//assets/101995
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython CPU temperature example in Celsius"""

import time

import microcontroller

while True:

 print(microcontroller.cpu.temperature)

 time.sleep(0.15)

The CPU temperature in Celsius is printed out to the serial console!

Try putting your finger on the microcontroller to see the temperature change.

The code is simple. First you import two modules: time and microcontroller .

Then, inside the loop, you print the microcontroller CPU temperature, and the time.s

leep() slows down the print enough to be readable. That's it!

You can easily print out the temperature in Fahrenheit by adding a little math to your

code, using this simple formula: Celsius * (9/5) + 32.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Templates/cpu_temperature_f/ and then click

on the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 123 of 146

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""CircuitPython CPU temperature example in Fahrenheit"""

import time

import microcontroller

while True:

 print(microcontroller.cpu.temperature * (9 / 5) + 32)

 time.sleep(0.15)

The CPU temperature in Fahrenheit is printed out to the serial console!

That's all there is to reading the CPU temperature using CircuitPython!

Arduino IDE Setup

The Arduino Philhower core () provides support for RP2040 microcontroller boards.

This page covers getting your Arduino IDE set up to include your board.

Arduino IDE Download

The first thing you will need to do is to download the latest release of the Arduino

IDE. The Philhower core requires version 1.8 or higher.

Arduino IDE Download

Download and install it to your computer.

Once installed, open the Arduino IDE.

©Adafruit Industries Page 124 of 146

https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://www.arduino.cc/en/software

Adding the Philhower Board Manager URL

In the Arduino IDE, and navigate to the Preferences window. You can access it

through File > Preferences on Windows or Linux, or Arduino > Preferences on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of

URLs is comma separated, and you will only have to add each URL once. The URLs

point to index files that the Board Manager uses to build the list of available &

installed boards.

Copy the following URL.

https://github.com/earlephilhower/arduino-pico/releases/download/

global/package_rp2040_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red

below).

Click OK to save and close Preferences.

Add Board Support Package

In the Arduino IDE, click on Tools > Board > Boards Manager. If you have previously

selected a board, the Board menu item may have a board name after it.

©Adafruit Industries Page 125 of 146

In the Boards Manager, search for RP2040. Scroll down to the Raspberry Pi Pico/

RP2040 by Earle F Philhower, III entry. Click Install to install it.

Once installation is complete, click Close to close the Boards Manager.

Choose Your Board

In the Tools > Boards menu, you should now see Raspberry Pi RP2040 Boards (possib

ly followed by a version number).

Navigate to the Raspberry Pi RP2040 Boards menu. You will see the available boards

listed.

Navigate to the Raspberry Pi RP2040 Boards menu and choose Adafruit Feather

RP2040.

Installing a new board package can take a few minutes. Don't click Cancel!

©Adafruit Industries Page 126 of 146

Now you're ready to begin using Arduino with your RP2040 board!

Arduino Usage

Now that you've set up the Arduino IDE with the Philhower RP2040 Arduino core,

you're ready to start using Arduino with your RP2040.

RP2040 Arduino Pins

There is no pin remapping for Arduino on the RP2040. Therefore, the pin names on

the top of the board are not the pin names used for Arduino. The Arduino pin names

are the RP2040 GPIO pin names.

To find the Arduino pin name, check the PrettyPins diagram found on the Pinouts

page (). Each GPIO pin in the diagram has a GPIOx pin name listed, where x is the pin

number. The Arduino pin name is the number following GPIO. For example, GPIO1 wo

uld be Arduino pin 1 .

The Feather RP2040 has the GPIO pin names listed on the bottom of the board as GP

x, where x is the pin number. The Arduino pin name is the number following GP. So,

for example, pin GP0 would be Arduino pin 0 .

Choose Your Board

Navigate to the Tools > Boards > Raspberry Pi RP2040 Boards menu. The Raspberry

PI RP2040 Boards menu name may be followed by a version number.

If there is no serial Port available in the dropdown, or an invalid one appears -

don't worry about it! The RP2040 does not actually use a serial port to upload, so

its OK if it does not appear if in manual bootload mode. You will see a serial port

appear after uploading your first sketch.

©Adafruit Industries Page 127 of 146

https://learn.adafruit.com/adafruit-feather-rp2040-pico/pinouts
https://learn.adafruit.com/adafruit-feather-rp2040-pico/pinouts

Once the menu has expanded, you will see three different versions the Feather

RP2040 available: Adafruit Feather RP2040, Adafruit Feather RP2040 (Picoprobe),

and Adafruit Feather RP2040 (pico-debug). Unless you are specifically familiar with

the other two, always choose Adafruit Feather RP2040.

Choose Adafruit Feather RP2040 from the menu.

Load the Blink Sketch

Begin by plugging in your board to your computer, and wait a moment for it to be

recognised by the OS. It will create a COM/serial port that you can now select from

the Tools > Port menu dropdown.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

Click Upload. A successful upload will result in text similar to the following.

Once complete, the little red LED will begin blinking once every second! Try changing

up the delay() timing to change the rate at which the LED blinks.

©Adafruit Industries Page 128 of 146

Manually Enter the Bootloader

If you get into a state with the bootloader where you can no longer upload a sketch,

or you have uploaded code that crashes and doesn't auto-reboot into the bootloader,

you may have to manually enter the bootloader.

To enter the bootloader, hold down the BOOTSEL button, and while continuing to hold

it (don't let go!), press and release the reset button. Continue to hold the BOOTSEL

button until the RPI-RP2 drive appears!

Once the RPI-RP2 drive shows up, your board is in bootloader mode. There will not be

a port available in bootloader mode, this is expected. Click Upload on your sketch to

try again.

Blink

The first and most basic program you can upload to your Arduino is the classic Blink

sketch. This takes something on the board and makes it, well, blink! On and off. It's a

great way to make sure everything is working and you're uploading your sketch to the

right board and right configuration.

When all else fails, you can always come back to Blink!

©Adafruit Industries Page 129 of 146

Pre-Flight Check: Get Arduino IDE &
Hardware Set Up

This lesson assumes you have Arduino IDE set up. This is a generalized checklist,

some elements may not apply to your hardware. If you haven't yet, check the previous

steps in the guide to make sure you:

Install the very latest Arduino IDE for Desktop (not all boards are supported by

the Web IDE so we don't recommend it).

Install any board support packages (BSP) required for your hardware. Some

boards are built in defaults on the IDE, but lots are not! You may need to install

plug-in support which is called the BSP.

Get a Data/Sync USB cable for connecting your hardware. A significant amount

of problems folks have stem from not having a USB cable with data pins. Yes,

these cursed cables roam the land, making your life hard. If you find a USB

cable that doesn't work for data/sync, throw it away immediately! There is no

need to keep it around, cables are very inexpensive these days.

Install any drivers required - If you have a board with a FTDI or CP210x chip, you

may need to get separate drivers. If your board has native USB, it probably

doesn't need anything. After installing, reboot to make sure the driver sinks in.

Connect the board to your computer. If your board has a power LED, make sure

its lit. Is there a power switch? Make sure its turned On!

Start up Arduino IDE and Select Board/Port

OK now you are prepared! Open the Arduino IDE on your computer. Now you have to

tell the IDE what board you are using, and how you want to connect to it.

In the IDE find the Tools menu. You will use this to select the board. If you switch

boards, you must switch the selection! So always double-check before you upload

code in a new session.

•

•

•

•

•

©Adafruit Industries Page 130 of 146

New Blink Sketch

OK lets make a new blink sketch! From the File menu, select New

Then in the new window, copy and paste this text:

int led = LED_BUILTIN;

void setup() {

 // Some boards work best if we also make a serial connection

 Serial.begin(115200);

 // set LED to be an output pin

 pinMode(led, OUTPUT);

}

void loop() {

©Adafruit Industries Page 131 of 146

 // Say hi!

 Serial.println("Hello!");

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(500); // wait for a half second

 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

 delay(500); // wait for a half second

}

One note you'll see is that we reference the LED with the constant LED_BUILTIN

rather than a number. That's because, historically, the built in LED was on pin 13 for

Arduinos. But in the decades since, boards don't always have a pin 13, or maybe it

could not be used for an LED. So the LED could have moved to another pin. It's best

to use LED_BUILTIN so you don't get the pin number confused!

The NeoPixel LED is located between the

SWD header and the reset button.

Verify (Compile) Sketch

OK now you can click the Verify button to convert the sketch into binary data to be

uploaded to the board.

Note that Verifying a sketch is the same as Compiling a sketch - so we will use the

words interchangeably

Note that in this example, we are not only blinking the LED but also printing to

the Serial monitor, think of it as a little bonus to test the serial connection.

©Adafruit Industries Page 132 of 146

https://learn.adafruit.com//assets/108399
https://learn.adafruit.com//assets/108399

During verification/compilation, the computer will do a bunch of work to collect all the

libraries and code and the results will appear in the bottom window of the IDE.

If something went wrong with compilation, you will get red warning/error text in the

bottom window letting you know what the error was. It will also highlight the line with

an error.

For example, here I had the wrong board selected - and the selected board does not

have a built in LED!

Here's another common error, in my haste I forgot to add a ; at the end of a line. The

compiler warns me that it's looking for one - note that the error is actually a few lines

up!

©Adafruit Industries Page 133 of 146

On success you will see something like this white text output and the message Done

compiling. in the message area.

Upload Sketch

Once the code is verified/compiling cleanly you can upload it to your board. Click the

Upload button.

The IDE will try to compile the sketch again for good measure, then it will try to

connect to the board and upload a the file.

This is actually one of the hardest parts for beginners because it's where a lot of

things can go wrong.

However, lets start with what it looks like on success! Here's what your board upload

process looks like when it goes right:

Often times you will get a warning like this, which is kind of vague:

Turning on detailed compilation warnings and output can be very helpful

sometimes - Its in Preferences under "Show Verbose Output During:" and check

the Compilation button. If you ever need to get help from others, be sure to do

this and then provide all the text that is output. It can assist in nailing down what

happened!

©Adafruit Industries Page 134 of 146

No device found on COM66 (or whatever port is selected)

An error occurred while uploading the sketch

This could be a few things.

First up, check again that you have the correct board selected! Many electronics

boards have very similar names or look, and often times folks grab a board different

from what they thought.

If you're positive the right board is selected, we recommend the next step is to put

the board into manual bootloading mode.

Native USB and manual bootloading

Historically, microcontroller boards contained two chips: the main micro chip (say,

ATmega328 or ESP8266 or ESP32) and a separate chip for USB interface that would

be used for bootloading (a CH430, FT232, CP210x, etc). With these older designs, the

microcontroller is put into a bootloading state for uploading code by the separate

chip. It allows for easier uploading but is more expensive as two chips are needed,

and also the microcontroller can't act like a keyboard or disk drive.

Modern chips often have 'native' USB - that means that there is no separate chip for

USB interface. It's all in one! Great for cost savings, simplicity of design, reduced size

and more control. However, it means the chip must be self-aware enough to be able

to put itself into bootload/upload mode on its own. That's fine 99% of the time but is

very likely you will at some point get the board into an odd state that makes it too

confused to bootload.

Before continuing we really, really suggest turning on Verbose Upload messages, it

will help in this process because you will be able to see what the IDE is trying to do.

It's a checkbox in the Preferences menu.

A lot of beginners have a little freakout the first time this happens, they think the

board is ruined or 'bricked' - it's almost certainly not, it is just crashed and/or

confused. You may need to perform a little trick to get the board back into a

good state, at which point you won't need to manually bootload again.

©Adafruit Industries Page 135 of 146

Enter Manual Bootload Mode

OK now you know it's probably time to try manual bootloading. No problem! Here is

how you do that for this board:

To enter the bootloader, hold down the BOOTSEL button, and while continuing to hold

it (don't let go!), press and release the reset button. Continue to hold the BOOTSEL

button until the RPI-RP2 drive appears!

Once you are in manual bootload mode, go to the Tools menu, and make sure you

have selected the bootloader serial port. It is almost certain that the serial port has

changed now that the bootloader is enabled

©Adafruit Industries Page 136 of 146

Now you can try uploading again!

This time, you should have success!

After uploading this way, be sure to click the reset button - it sort of makes sure that

the board got a good reset and will come back to life nicely.

Did you remember to select the new Port in the Tools menu since the bootloader

port has changed?

After uploading with Manual Bootloader - don't forget to re-select the old Port

again

©Adafruit Industries Page 137 of 146

It's also a good idea to try to re-upload the sketch again now that you've performed a

manual bootload to get the chip into a good state. It should perform an auto-reset the

second time, so you don't have to manually bootload again.

Finally, a Blink!

OK it was a journey but now we're here and you can enjoy your blinking LED. Next up,

try to change the delay between blinks and re-upload. It's a good way to make sure

your upload process is smooth and practiced.

I2C Scan Test

A lot of sensors, displays, and devices can connect over I2C. I2C is a 2-wire 'bus' that

allows multiple devices to all connect on one set of pins so it's very convenient for

wiring!

When using your board, you'll probably want to connect up I2C devices, and it can be

a little tricky the first time. The best way to debug I2C is go through a checklist and

then perform an I2C scan

Common I2C Connectivity Issues

Have you connected four wires (at a minimum) for each I2C device? Power the

device with whatever is the logic level of your microcontroller board (probably

3.3V), then a ground wire, and a SCL clock wire, and and a SDA data wire.

If you're using a STEMMA QT board - check if the power LED is lit. It's usually a

green LED to the left side of the board.

Does the STEMMA QT/I2C port have switchable power or pullups? To reduce

power, some boards have the ability to cut power to I2C devices or the pullup

•

•

•

©Adafruit Industries Page 138 of 146

resistors. Check the documentation if you have to do something special to turn

on the power or pullups.

If you are using a DIY I2C device, do you have pullup resistors? Many boards do

not have pullup resistors built in and they are required! We suggest any common

2.2K to 10K resistors. You'll need two: one each connects from SDA to positive

power, and SCL to positive power. Again, positive power (a.k.a VCC, VDD or V+)

is often 3.3V

Do you have an address collision? You can only have one board per address. So

you cannot, say, connect two AHT20's to one I2C port because they have the

same address and will interfere. Check the sensor or documentation for the

address. Sometimes there are ways to adjust the address.

Does your board have multiple I2C ports? Historically, boards only came with

one. But nowadays you can have two or even three! This can help solve the

"hey, but what if I want two devices with the same address" problem: just put

one on each bus.

Are you hot-plugging devices? I2C does not support dynamic re-connection, you

cannot connect and disconnect sensors as you please. They should all be

connected on boot and not change. (Only exception is if you're using a hot-plug

assistant but that'll cost you ()).

Are you keeping the total bus length reasonable? I2C was designed for maybe

6" max length. We like to push that with plug-n-play cables, but really please

keep them as short as possible! (Only exception is if you're using an active bus

extender ()).

The Feather RP2040 has two I2C ports. One is available as WIRE1 on the STEMMA

QT port, and the other is available as WIRE0 on the SCL/SDA pins.

Perform an I2C scan!

Install TestBed Library

To scan I2C, the Adafruit TestBed library is used. This library and example just makes

the scan a little easier to run because it takes care of some of the basics. You will

need to add support by installing the library. Good news: it is very easy to do it. Go to

the Arduino Library Manager.

•

•

•

•

•

©Adafruit Industries Page 139 of 146

https://www.adafruit.com/product/5159
https://www.adafruit.com/product/5159
https://www.adafruit.com/product/4756
https://www.adafruit.com/product/4756

Search for TestBed and install the Adafruit TestBed library

Now open up the I2C Scan example

#include <Adafruit_TestBed.h>

extern Adafruit_TestBed TB;

#define DEFAULT_I2C_PORT &Wire

// Some boards have TWO I2C ports, how nifty. We should scan both

#if defined(ARDUINO_ARCH_RP2040) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3_NOPSRAM) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO) \

 || defined(ARDUINO_SAM_DUE)

 #define SECONDARY_I2C_PORT &Wire1

#endif

void setup() {

 Serial.begin(115200);

 // Wait for Serial port to open

 while (!Serial) {

 delay(10);

 }

 delay(500);

 Serial.println("Adafruit I2C Scanner");

#if defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3_NOPSRAM) || \

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3) || \

©Adafruit Industries Page 140 of 146

 defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO)

 // ESP32 is kinda odd in that secondary ports must be manually

 // assigned their pins with setPins()!

 Wire1.setPins(SDA1, SCL1);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)

 // turn on the I2C power by setting pin to opposite of 'rest state'

 pinMode(PIN_I2C_POWER, INPUT);

 delay(1);

 bool polarity = digitalRead(PIN_I2C_POWER);

 pinMode(PIN_I2C_POWER, OUTPUT);

 digitalWrite(PIN_I2C_POWER, !polarity);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2_TFT)

 pinMode(TFT_I2C_POWER, OUTPUT);

 digitalWrite(TFT_I2C_POWER, HIGH);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2_REVTFT)

 pinMode(TFT_I2C_POWER, OUTPUT);

 digitalWrite(TFT_I2C_POWER, HIGH);

#endif

#if defined(ADAFRUIT_FEATHER_ESP32_V2)

 // Turn on the I2C power by pulling pin HIGH.

 pinMode(NEOPIXEL_I2C_POWER, OUTPUT);

 digitalWrite(NEOPIXEL_I2C_POWER, HIGH);

#endif

}

void loop() {

 Serial.println("");

 Serial.println("");

 Serial.print("Default port (Wire) ");

 TB.theWire = DEFAULT_I2C_PORT;

 TB.printI2CBusScan();

#if defined(SECONDARY_I2C_PORT)

 Serial.print("Secondary port (Wire1) ");

 TB.theWire = SECONDARY_I2C_PORT;

 TB.printI2CBusScan();

#endif

 delay(3000); // wait 3 seconds

}

Wire up I2C device

While the examples here will be using the Adafruit MCP9808 (), a high accuracy

temperature sensor, the overall process is the same for just about any I2C sensor or

device.

The first thing you'll want to do is get the sensor connected so your board has I2C to

talk to.

©Adafruit Industries Page 141 of 146

https://www.adafruit.com/product/5027

Adafruit MCP9808 High Accuracy I2C

Temperature Sensor Breakout

The MCP9808 digital temperature sensor

is one of the more accurate/precise we've

ever seen, with a typical accuracy of

±0.25°C over the sensor's -40°C to...

https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -

50mm Long

This 4-wire cable is 50mm / 1.9" long and

fitted with JST SH female 4-pin

connectors on both ends. Compared with

the chunkier JST PH these are 1mm pitch

instead of 2mm, but...

https://www.adafruit.com/product/4399

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite

simple and solder-free.

Simply connect the STEMMA QT cable

from the STEMMA QT port on your board

to the STEMMA QT port on the MCP9808.

Note that since the Feather RP2040 has TWO I2C ports, this will make the sensor

appear on the Wire port only (to have it on the Wire1 secondary port, connect SDA/

SCL to pins 2 and 3)

©Adafruit Industries Page 142 of 146

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://learn.adafruit.com//assets/108411
https://learn.adafruit.com//assets/108411

Now upload the scanning sketch to your microcontroller and open the serial port to

see the output. You should see something like this:

FAQ

My I2C is not working in Arduino. What's going on?

You may have the wrong setup! The Feather RP2040 uses Wire1 for I2C in

Arduino.

Downloads

Files:

RP2040 Datasheet ()

EagleCAD PCB Files on GitHub ()

3D Models on GitHub ()

Fritzing object in the Adafruit Fritzing Library ()

PrettyPins PDF on GitHub ()

PrettyPins SVG ()

The Feather_RP2040.uf2 file below is the code that ships on the Feather RP2040.

Feather_RP2040.uf2

•

•

•

•

•

•

©Adafruit Industries Page 143 of 146

https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://github.com/adafruit/Adafruit-Feather-RP2040-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4884%20Feather%20RP2040
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Feather%20RP2040.fzpz
https://github.com/adafruit/Adafruit-Feather-RP2040-PCB/blob/main/Adafruit%20Feather%20RP2040%20pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/107/205/original/Adafruit_Feather_RP2040_pinout.svg?1639162900
https://cdn-learn.adafruit.com/assets/assets/000/102/080/original/Feather_RP2040.uf2?1620747828

Schematic and Fab Print

Schematic and Fab Print Original Version

Note: The schematic references 2MB Flash. The Feather RP2040 ships with 8MB

flash. The pinouts are the same.

©Adafruit Industries Page 144 of 146

©Adafruit Industries Page 145 of 146

3D Model

©Adafruit Industries Page 146 of 146

	Introducing Adafruit Feather RP2040
	Table of Contents
	Overview
	Pinouts
	Assembly
	Power Management
	Install CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Pins and Modules
	CircuitPython Libraries
	Frequently Asked Questions
	Welcome to the Community!
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Troubleshooting
	CircuitPython Essentials
	Blink
	Digital Input
	Built-In NeoPixel LED
	CPU Temperature
	Arduino IDE Setup
	Arduino Usage
	Blink
	I2C Scan Test
	FAQ
	Downloads

	Overview
	Pinouts
	Power Pins and Connections
	Logic Pins
	I2C and SPI on RP2040
	PWM on RP2040
	Analog Pins
	Digital Pins
	CircuitPython Pins vs GPxx Pins
	CircuitPython I2C, SPI and UART

	GPIO Pins by Pin Functionality
	I2C Pins
	SPI Pins
	UART Pins
	PWM Pins

	Microcontroller and Flash
	Buttons and RST Pin
	LEDs
	STEMMA QT
	Debug Interfaces

	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Power Management
	Battery + USB Power
	Power Supplies
	Measuring Battery
	ENable pin
	Alternative Power Options
	Install CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode
	In Safe Mode

	Flash Resetting UF2

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	Built-In NeoPixel LED
	NeoPixel Location
	NeoPixel Color and Brightness
	RGB LED Colors
	NeoPixel Rainbow

	CPU Temperature
	Microcontroller Location
	Reading the Microcontroller Temperature

	Arduino IDE Setup
	Arduino IDE Download
	Adding the Philhower Board Manager URL
	Add Board Support Package
	Choose Your Board

	Arduino Usage
	RP2040 Arduino Pins
	Choose Your Board
	Load the Blink Sketch
	Manually Enter the Bootloader

	Blink
	Pre-Flight Check: Get Arduino IDE & Hardware Set Up
	Start up Arduino IDE and Select Board/Port
	New Blink Sketch
	Verify (Compile) Sketch
	Upload Sketch
	Native USB and manual bootloading
	Enter Manual Bootload Mode

	Finally, a Blink!
	I2C Scan Test
	Common I2C Connectivity Issues
	Perform an I2C scan!
	Install TestBed Library
	Wire up I2C device
	Wiring the MCP9808

	FAQ
	My I2C is not working in Arduino. What's going on?

	Downloads
	Files:

	Schematic and Fab Print
	Schematic and Fab Print Original Version
	3D Model

