ﬁ adafruit learning system

Adafruit Airlift Bitsy Add-On - ESP32 WiFi Co-Processor

Created by Bryan Siepert

Last updated on 2021-03-29 01:04:51 PM EDT

Guide Contents

Guide Contents 2
Overview 4
Pinouts 7
Power Pins 7

SPI and Control Pins 7

RGB LED 9
Assembly 10
CircuitPython WiFi 12

CircuitPython Microcontroller Pinout 12
CircuitPython Installation of ESP32SPI Library 12
CircuitPython Usage 12
Internet Connect! 14
What's a secrets file? 14
Connect to WiFi 14
Requests 18

HTTP GET with Requests 20

HTTP POST with Requests 21

Advanced Requests Usage 22
WiFi Manager 23
OLD - CircuitPython WiFi 26

CircuitPython Microcontroller Pinout 26
CircuitPython Installation of ESP32SPI Library 26
CircuitPython Usage 26
CircuitPython BLE 28
CircuitPython BLE UART Example 28
Adafruit Airlift Bitsy ESP32 Add-On Wiring 28
Update the AirLift Firmware 28
Install CircuitPython Libraries 28
Install the Adafruit Bluefruit LE Connect App 29
Copy and Adjust the Example Program 29
Talk to the AirLift via the Bluefruit LE Connect App 30
Arduino WiFi 33
Library Install 33
First Test 33
WiFi Connection Test 35
Secure Connection Example 36

JSON Parsing Demo 37

Adapting Other Examples 38
Upgrade External ESP32 Airlift Firmware 40
External AirLift FeatherWing, Shield, or ltsyWing 40

Upload Serial Passthrough code for Feather or ltsyBitsy 41
External AirLift Breakout 42
Code Usage 44

Install esptool.py 45
Burning nina-fw with esptool 45

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 2 of 48

Verifying the Upgraded Firmware Version
Arduino
CircuitPython

Downloads
Files

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

46
46
46

47
47

47

47

Page 3 of 48

Overview

BmmEmm
L (=8 aND viN

Give your ltsyBitsy project a lift with the Adafruit AirLift Bitsy Add-On! This sweet add-on for the ItsyBitsy
lets you use the powerful ESP32 as a WiFi or BLE co-processor. You probably have your favorite ItsyBitsy
(like the ItsyBitsy M4 (https://adafru.it/BQC)) that comes with its own set of awesome peripherals and lots
of libraries. But it doesn't have WiFi built in! So let's give that chip a best friend, the ESP32. This chip can
handle all the heavy lifting of connecting to a WiFi network and transferring data from a site, even if its
using the latest TLS/SSL encryption (it has root certificates pre-burned in).

Having WiFi managed by a separate chip means your code is simpler, you don't have to cache socket

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 4 of 48

https://www.adafruit.com/product/3800
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361

data, or compile in & debug an SSL library. Instead the Airlift Add-On allows you to send basic but
powerful socket-based commands over 8MHz SPI for high speed data transfer. You can use the 3V 32u4,
MO, or M4 ItsyBitsy in Arduino although the '32u4 will not be able to do very complex tasks or buffer a
lot of data because they do not have a lot of RAM. The add-on also works great with CircuitPython,
though a SAMD51/Cortex M4 minimum required since we need a bunch of RAM. All you need is an SPI
bus and 2 control pins plus a power supply that can provide up to 250mA during WiFi usage.

The ESP32 also supports BLE (Bluetooth Low Energy), though not simultaneously with WiFi. Many of our
CircuitPython builds include native support for ESP32 BLE. Right now, we only support the ESP32 acting
as a BLE peripheral, but that's sufficient to communicate with the ESP32 from a phone, tablet, host
computer, or another BLE-capable board. You use a few control pins and the RX and TX pins to talk to the
ESP32 when it's in BLE mode.

ECS

114
b

it
o

We placed an ESP32 module on a BitsyWing with a tri-state chip for MOSI so you can share the SPI bus.
The add on comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-processor
firmware that you can use in CircuitPython to use this into WiFi co-processsor over SPI + 2

pins (https://adafru.it/Evl). We also toss in some header so you can solder it in though you'll need stacking
headers for your ItsyBitsy to put the add-on on top.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works
great! (https://adafru.it/E7O)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 5 of 48

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/nina-fw

ey AirLift
BitsyHing
ATL94V-0

KX-D go1de
E48731
”

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 6 of 48

Pinouts

At ﬂESCK A

.Jli'-.

Power Pins

© 00800 19/33 |

ﬁerxft B:tsq;lmq

('\-"
=
¥
<
£
F 4
g
3

® GND - Common power/logic ground.

® 3.3V - Power supply for the ublox WiFi module. You'll need up to 250mA to power the module.
ItsyBitsy's tend to have a 500mA regulator so they should be OK, just make sure you're aware of
your power budget

SPI and Control Pins

To keep transfers speedy, we use SPI not UART Serial. UART is too slow and hard to synchronize. This
uses more pins but the experience is much better!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 7 of 48

1Ng

KX-D oa01d9

X2
>
-

-ﬁa
o <
A3
@

Owv
D

Classic SPI Pins:

® SCK - SPI Clock from your microcontroller, logic level is 3.3V only

® MISO - SPI Data from the AirLift to the microcontroller, logic level is 3.3V only. This is tri-stated when
not selected, so you can share the SPI bus with other devices.

® MOSI- SPI Data to the AirLift from the microcontroller, logic level is 3.3V only.

® ESPCS - SPI Chip Select from the microcontroller to start sending commands to the AirLift, and to
choose BLE mode on reset, logic level is 3.3V only

Required Control Pins:

® ESPBUSY - this pin is an input from the AirLift, it will let us know when its ready for more commands
to be sent. This is 3.3V logic out. This pin mustbe connected.

® ESPRST- this pin is an output to the AirLift. Set low to put the AirLift into reset. You should use this
pin, even though you might be able to run for a short while without it, it's essential to 'kick' the chip if
it ever gets into a locked up state. Logic level is 3.3V

Warning! The initial batch has the silk screen labels for ESPBUSY and ESPRST swapped! The order
should be ECS/RST/BSY not ECS/BSY/RST. The schematic, code, and fritzing object have been fixed.
The silk will be corrected for the next run

Optional Control Pins:

® ESPGPIOO - this is the ESP32 GPIOO pin, which is used to put the WiFi module it into bootloading
mode if you want to update the firmware. It is also used if you like when the ESP32 is acting as a
server, to let you know data is ready for reading. It's not required in WiFi mode, but you'll need to
connect it for BLE mode. You'll need to solder the pad on the bottom of the Bitsy Add-on to
connect it.

® ESPRX & ESPTX - Serial data in and Serial data out, used for bootloading new firmware, and for
communication when in BLE mode. Leave disconnected if not using BLE or when not uploading new
WiFi firmware to the AirLift (which is a rare occurrence). You'll need to solder the two pads on the
bottom of the Bitsy Add-on to use these pins. Soldering the pads connects ESPTX to RX and ESPTX
to RX, respectively.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 8 of 48

60
O

KX-D @o1d9

o
- C
s -
3
=N
t‘-‘

i
AW 94V-0

D
w
D

RGB LED

There is a small RGB LED to the left of the ESP32. These RGB LEDs are available in the Arduino and
CircuitPython libraries if you'd like to PWM them for a visual alert. They're connected to the ESP32's pins

26 (Red), 25 (Green), and 27 (Blue).

jécs o)

S

i) o AL

Page 9 of 48

https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

© Adafruit Industries

The antenna on the new, smaller ESP32 module is very delicate! Avoid touching it and grab the add-
on by the long sides to avoid smushing the antenna

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 10 of 48

I

To stack the Airlift Add-on on top of the ltsyBitsy, you'll need
stacking headers for the ItsyBitsy. For now you'll need to cut

I

down a set of Feather Stacking Headers (https://adafru.it/oAP)

to fit the ItsyBitsy however we will have headers with the
correctly length soon!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 11 of 48

https://learn.adafruit.com//assets/80351
https://www.adafruit.com/product/2830

CircuitPython WiFi

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit CircuitPython
ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

The ESP32SPI library requires a microcontroller with “128KB of RAM or more. The SAMD21 will not
work.

CircuitPython Microcontroller Pinout
Since all CircuitPython-running ItsyBitsies follow the same pinout, you do not need to change any of the

pins listed below.

To use the ESP32's pins, copy the following lines into your code:

esp32 cs = DigitalInOut(board.D13)
esp32 reset = DigitalInOut(board.D12)
esp32 ready = DigitalInOut(board.D11)

Then, include the following code to use the pin:

esp32 gpio® = DigitalInOut(board.D10)

CircuitPython Installation of ESP32SPI Library

You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your
CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your
board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find
and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our
CircuitPython starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

You can manually install the necessary libraries from the bundle:

® adafruit_esp32spi
® adafruit_requests.mpy
® adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi,
adafruit_requests.mpy, and adafruit_bus_device files and folders copied over.

Next make sure you are set up to connect to the serial console (https://adafru.it/Bec)

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 12 of 48

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

import board
import busio
from digitalio import DigitalInOut

from adafruit esp32spi import adafruit esp32spi
print("ESP32 SPI hardware test")
esp32 cs = DigitalInOut(board.D13)

esp32 reset = DigitalInOut(board.D12)
esp32 ready = DigitalInOut(board.D11)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'l))

print("Done!")

Connect to the serial console (https://adafru.it/BIO) to see the output. It should look something like the
following:

Make sure you see the same output! If you don't, check your wiring. Note that we've changed the pinout
in the code example above to reflect the CircuitPython Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

If you can read the Firmware and MAC address but fails on scanning SSIDs, check your power
supply, you may be running out of juice to the ESP32 and it's resetting

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 13 of 48

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board connected to the
Internet. Note that access to enterprise level secured WiFi networks is not currently supported, only WiFi
networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to
avoid is people accidentally sharing their passwords or secret tokens and API keys. So, we designed all
our examples to use a secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data.

That way you can share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
'ssid' : 'home ssid',
'password' : 'my password',
'timezone' : "America/New York", # http://worldtimeapi.org/timezones
'github token' : 'fawfj23rakjnfawiefa',
'hackaday token' : 'h4xx0rs3kret',
}

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say
'ssid") and then a colon to separate it from the entry key 'home ssid' and finally a comma,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may
need more tokens and keys, just add them one line at a time. See for example other tokens such as one
for accessing github or the hackaday API. Other non-secret data like your timezone can also go here, just
cause it's called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and
remember that if your city is not listed, look for a city in the same time zone, for example Boston, New
York, Philadelphia, Washington DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the ESP32SPI and the
Requests libraries - you'll need to visit the CircuitPython bundle and install (https://adafru.it/ENC):

adafruit_bus_device
adafruit_esp32spi
adafruit_requests
neopixel

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 14 of 48

http://worldtimeapi.org/timezones
https://circuitpython.org/libraries

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit requests as requests

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

Get wifi details and more from a secrets.py file

try:
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")
raise

print("ESP32 SPI webclient test")

TEXT URL "http://wifitest.adafruit.com/testwifi/index.html"
JSON _URL = "http://api.coindesk.com/v1l/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an AirLift Shield:
esp32 cs = DigitalInOut(board.D10)
esp32 ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

H K K

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32 cs = DigitalInOut(board.D13)

esp32 ready = DigitalInOut(board.D11)

esp32 reset = DigitalInOut(board.D12)

H* H ¥ W

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

H* o H W R

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

requests.set socket(socket, esp)

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"l))

print("Connecting to AP...")
while not esp.is_connected:
try:
esp.connect AP(secrets["ssid"], secrets["password"])
except RuntimeError as e:

nrint("ranuld nnt rannect tn AP retrvina- " @)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

Page 15 of 48

Mratitl mvM LU UL Luriee s v g g e v yaniys y o~

continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip address))
print(
"IP lookup adafruit.com: %s" % esp.pretty ip(esp.get host by name("adafruit.com"))
)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp. debug = True

print("Fetching text from", TEXT_URL)
r = requests.get (TEXT URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON URL)
r = requests.get(JSON URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")
And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your WiFi ssid and password

In a serial console, you should see something like the following. For more information about connecting
with a serial console, view the guide Connecting to the Serial Console (https://adafru.it/Bec).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 16 of 48

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

EP COMGT - PuTTV - | X

F

I

D !
In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32 cs = DigitalInOut(board.ESP CS)
esp32 ready = DigitalInOut(board.ESP BUSY)
esp32 reset = DigitalInOut(board.ESP RESET)

spi
esp

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP _SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be
using the adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a
little bit of a hack, but it lets us use requests like CPython does.

requests.set socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

Performs a scan of all access points it can see and prints out the name and signal strength:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 17 of 48

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'l))

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain

name lookup and ping google.com to check network connectivity (note sometimes the ping fails or takes
a while, this isn't a big deal)

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(secrets["ssid"], secrets["password"])
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip address))
print(
"IP lookup adafruit.com: %s" % esp.pretty ip(esp.get host by name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB)
device, we can do a lot of neat tricks. Like for example we can implement an interface a lot like
requests (https://adafru.it/E9o) - which makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT URL)

r = requests.get (TEXT _URL)

print('-"'%*40)

print(r.text)

print('-'%*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be
easily queried or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1l/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'%*40)

r.close()

Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing

named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1
requests without "crafting" them and provides helpful methods for parsing the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

adafruit requests usage with an esp32spi_socket

import board
import busio

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 18 of 48

http://docs.python-requests.org/en/master/
https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with "ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

spi
esp

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(secrets["ssid"], secrets["password"])
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set interface(esp)
requests.set socket(socket, esp)

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET URL = "http://httpbin.org/get"
JSON_POST _URL = "http://httpbin.org/post"

print("Fetching text from %s" % TEXT URL)
response = requests.get(TEXT URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON GET URL)
response = requests.get(JSON GET URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)

response.close()

data = "31F"
print ("P0OSTing data to {0}: {1}".format(JSON POST URL, data))

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

Page 19 of 48

response = requests.post(JSON POST URL, data;data;
print("-" * 40)

json_resp = response.json()

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp["data"])
print("-" * 40)

response.close()

json_data = {"Date": "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON POST URL, json data))
response = requests.post(JSON POST URL, json=json data)

print("-" * 40)

json _resp = response.json()

Parse out the 'json' key from json resp dict.

print("JSON Data received from server:", json resp["json"])
print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket

and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit _esp32spi.adafruit esp32spi_socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
except RuntimeError as e:
print("could not connect to AP, retrying: ",e)
continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website
- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

Page 20 of 48

http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the response from the server
into a variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved
the server's response , we can read it back. Luckily for us, requests automatically decodes the server's
response into human-readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the
response's data.

print("Fetching text from %s"STEXT URL)
response = requests.get(TEXT URL)
print('-"'%*40)

print("Text Response: ", response.text)
print('-"'%*40)
response.close()

While some servers respond with text, some respond with json-formatted data consisting of attribute—
value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict.
object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted
response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict.

print("Fetching JSON data from %s"%JSON GET URL)
response = requests.get(JSON GET URL)
print('-"'%*40)

print("JSON Response: ", response.json())
print('-"'%*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method, passing ita data value.

data = '31F'

print("P0STing data to {0}: {1}".format(JSON POST URL, data))
response = requests.post(JSON POST URL, data=data)
print('-'%*40)

json resp = response.json()

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp['data'])
print('-"'%*40)

response.close()

You can also post json-formatted data to a server by passing json_data into the requests.post method.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 21 of 48

json data = {"Date" : "July 25, 2019"}
print("P0STing data to {0}: {1}".format(JSON POST URL, json data))
response = requests.post(JSON POST URL, json=json data)
print('-"'%*40)

json resp = response.json()

Parse out the 'json' key from json resp dict.

print("JSON Data received from server:", json resp['json'])
print('-"'%*40)

response.close()

Advanced Requests Usage
Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status

code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with "ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
from secrets import secrets
except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32 _cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

spi busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP_SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(secrets["ssid"], secrets["password"])
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Tnitializa a raninacte nhiart with a enrlkat and acnWWeni intarfara

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 22 of 48

T OANALLUGLALC U TOYULOtSo UNJULL WAL U SULATL GIIU COopOLIpE ditel Tuce
socket.set interface(esp)
requests.set socket(socket, esp)

JSON GET URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON GET URL)
response = requests.get(JSON GET URL, headers=headers)
print("-" * 60)

json_data = response.json()

headers = json data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_ code)
print("-" * 60)

Close, delete and collect the response data
response.close()

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check WiFi status and have
many loops to manage connections and disconnections. For more advanced uses, we recommend using
the WiFiManager object. It will wrap the connection/status/requests loop for you - reconnecting if WiFi
drops, resetting the ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some
extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit esp32spi import adafruit esp32spi

from adafruit esp32spi import adafruit esp32spi wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 23 of 48

esp32 cs = DigitalInOut(board.D9)
esp32 ready = DigitalInOut(board.D10)
esp32 reset = DigitalInOut(board.D5)

spi busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)
"""Use below for Most Boards"""
status light = neopixel.NeoPixel(
board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102 SCK, board.APA102 MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit rgbled
from adafruit esp32spi import PWMOut
RED LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE LED = PWMOut.PWMOut(esp, 25)
status light = adafruit rgbled.RGBLED(RED LED, BLUE LED, GREEN LED)
wifi = adafruit esp32spi wifimanager.ESPSPI WiFiManager(esp, secrets, status light)

H oH H W H KR K

counter = 0

while True:
try:
print("Posting data...", end="")
data = counter
feed = "test"
payload = {"value": data}
response = wifi.post(
"https://io.adafruit.com/api/v2/"
+ secrets["aio username"]
+ "/feeds/"
+ feed
+ "/data",
json=payload,
headers={"X-AIO-KEY": secrets["aio key"l},
)
print(response.json())
response.close()
counter = counter + 1
print("0K")
except (ValueError, RuntimeError) as e:
print("Failed to get data, retrying\n", e)
wifi.reset()
continue
response = None
time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32
object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the
Adafruit 1O API:

® Qajo_username

® aio_key

You can go to your adafruit.io View AlO Key link to get those two values and add them to the secrets file,
which will now look something like this:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 24 of 48

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
'ssid' : ' your ssid ‘',
'password' : ' your wifi password ',
'timezone' : "America/Los Angeles", # http://worldtimeapi.org/timezones

'aio username' : ' your aio username ',
'aio key' : ' your aio key ',

}

Next, set up an Adafruit IO feed named test

® [f you do not know how to set up a feed, follow this page and come back when you've set up a feed
named test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or
initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython
board posts data to it!

page of 1

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 25 of 48

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

OLD - CircuitPython WiFi
It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit CircuitPython
ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

You need plenty of RAM for CircuitPython/requests/json, so the ItsyBitsy MO will notwork! Please use an
Itsy with at least 100KB of RAM, like the ItsyBitsy M4!

CircuitPython Microcontroller Pinout
Since all CircuitPython-running ItsyBitsies follow the same pinout, you do not need to change any of the

pins listed below.

To use the ESP32's pins, copy the following lines into your code:

esp32 cs = DigitalInOut(board.D13)
esp32 reset = DigitalInOut(board.D12)
esp32 ready = DigitalInOut(board.D11)

Then, include the following code to use the pin:

esp32 _gpio® = DigitalInOut(board.D10)

CircuitPython Installation of ESP32SPI Library

You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your
CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your
board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find
and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our
CircuitPython starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

You can manually install the necessary libraries from the bundle:

® adafruit_esp32spi
® adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi and
adafruit_bus_device folders copied over.

Next make sure you are set up to connect to the serial console (https://adafru.it/Bec)

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 26 of 48

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

import board
import busio
from digitalio import DigitalInOut

from adafruit esp32spi import adafruit esp32spi
print("ESP32 SPI hardware test")
esp32 cs = DigitalInOut(board.D13)

esp32 reset = DigitalInOut(board.D12)
esp32 ready = DigitalInOut(board.D11)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP _SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'l))

print("Done!")

Connect to the serial console (https://adafru.it/BIO) to see the output. It should look something like the
following:

Make sure you see the same output! If you don't, check your wiring. Note that we've changed the pinout
in the code example above to reflect the CircuitPython Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

If you can read the Firmware and MAC address but fails on scanning SSIDs, check your power
supply, you may be running out of juice to the ESP32 and it's resetting

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 27 of 48

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

CircuitPython BLE
CircuitPython BLE UART Example

It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy (BLE) with
CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the default), or in BLE mode; you
cannot use both modes simultaenously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit Connect app. Use
CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a similar name. The
ESP32-S2 does not support BLE.

Currently the AirLift support for CircuitPython only provides BLE peripheral support. BLE central is
under development. So you cannot connect to BLE devices like Heart Rate monitors, etc., but you can
act as a BLE peripheral yourself.

Adafruit Airlift Bitsy ESP32 Add-On Wiring

If you have an Adafruit Airlift Bitsy ESP32 Add-On, you will need to solder three jumpers closed on the
bottom side of the board to enable BLE. The rest of the ESP32 pins you need are already jumpered to
certain ItsyBitsy pins.

Update the AirLift Firmware

You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions of the AirLift
firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've upgraded the AirLift's
firmware:

https://adafru.it/RdC

https://adafru.it/RdC

Ensure the AirLift firmware is version 1.7.1 or higher for BLE to work.

Install CircuitPython Libraries

Make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your
board; you'll need 6.0.0 or later.

Next you'll need to install the necessary libraries to use the hardware and BLE. Carefully follow the steps
to find and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our
CircuitPython starter guide has a great page on how to use the library bundle (https://adafru.it/ABU).

Install these libraries from the bundle:
® adafruit_airlift

® adafruit_ble

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 28 of 48

https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-external-esp32
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafruit_airlift and
adafruit_ble folders copied over.

Install the Adafruit Bluefruit LE Connect App

The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE peripherals that
provide a over-the-air "UART" service. Follow the instructions in the Bluefruit LE Connect
Guide (https://adafru.it/Eg5) to download and install the app on your phone or tablet.

Copy and Adjust the Example Program

Copy the program below to the file code.py on CIRCUITPY on your board.

TAKE NOTE: Adjust the program as needed to suit the AirLift board you have. Comment and
uncomment lines 12-39 below as necessary.

import board

from adafruit _ble import BLERadio
from adafruit ble.advertising.standard import ProvideServicesAdvertisement
from adafruit ble.services.nordic import UARTService

from adafruit airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,

or MatrixPortal, you can use the default pin settings.
Leave this DEFAULT line uncommented.

esp32 = ESP32() # DEFAULT

If you are using CircuitPython 6.0.0 or earlier,

on PyPortal and PyPortal Titano only, use the pin settings
below. Comment out the DEFAULT line above and uncomment
the line below. For CircuitPython 6.1.0, the pin names
have changed for these boards, and the DEFAULT line

above is correct.

esp32 = ESP32(tx=board.TX, rx=board.RX)

#H oH R K W K R

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
If you are using an AirLift Breakout, check that these
choices match the wiring to your microcontroller board,
or change them as appropriate.
esp32 = ESP32(
reset=board.D12,
gpioO=board.D10,
busy=board.D11,
chip_select=board.D13,
tx=board.TX,
rx=board.RX,

HoH H W OH K W H R K H KR KK

If you are using an AirLift Shield,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
esp32 = ESP32(
reset=board.D5,
gpioO=board.D6,
busy=board.D7,

chip_select=board.D10,
tv=hnard TX

LI T T T

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 29 of 48

https://learn.adafruit.com/bluefruit-le-connect/

B Y

rx=board.RX,
#)

adapter = esp32.start bluetooth()

ble = BLERadio(adapter)
uart = UARTService()
advertisement = ProvideServicesAdvertisement (uart)

while True:
ble.start advertising(advertisement)
print("waiting to connect")
while not ble.connected:
pass
print("connected: trying to read input")
while ble.connected:
Returns b'' if nothing was read.
one byte = uart.read(1l)
if one byte:
print(one byte)
uart.write(one byte)

Talk to the AirLift via the Bluefruit LE Connect App

Start the Bluefruit LE Connect App on your phone or tablet. You should see a CIRCUITPY device available
to connect to. Tap the Connect button (1):

ul Verizon = 3:43 PM

Select Device

~ Filter: with UART €
Q :
RSS| 3= ——————— -100 dBm

Show unnamed devices ()

Must have UART Service ()

r Multiple UART mode

CIRCUITPY9816
Uart capable

Conhact
ol Lonnect

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART module (2):

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 30 of 48

i Verizon = 3:43 PM

Modules

CIRCUITPY9816
all -56 dBm

Info

M, UART e
~/ Plotter

4% pinijo

=i« Controller

(¢) AHRS/Calibration

Thermal Camera
On the UART module page, you can type a string and press Send (3). You'll see that string entered, and
then see it echoed back (echoing is in gray).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 31 of 48

3:44 PM

UART

abec

There' an echo in here!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 32 of 48

Arduino WiFi

You can use the AirLift with Arduino. Unlike CircuitPython, it work work with most of the Arduino

compatible ItsyBitsies, even the 3V ItsyBitsy 32u4. However, if you want to use libraries like ArduinoJSON
or add sensors and SD card, you'll really want an ATSAMD?21 (Cortex M0O) or ATSAMD51 (Cortex M4), both
of which have plenty or RAM

Library Install
We're using a variant of the Arduino WiFiNINA library, which is amazing and written by the Arduino team!
The official WiFi101 library won't work because it doesn't support the ability to change the pins .

So! We made a fork that you can install.

Click here to download the library:

https://adafru.it/Evm

https://adafru.it/Evm
Within the Arduino IDE, select Install library from ZIP...

AirLift_Breakout | Arduino 1.8.5

.—-."‘.'-._'-"'.

File Edit |Sketch| Tools Help

AirLift_|

#incly
#incly
#incly
#incly

#incly

Verify/Compile

Upload

Upload Using Programmer Ctrl+Shift+U

Ctrl+R
Ctrl+U

Export compiled Binary Ctrl+Alt+5

Show Sketch Folder

Include Library
Add File...

Ctrl+K

tinclude

"ESP3Z2BootROM.h"

#define ESP32_GPIOD
#define ESP32 RESETN 8
#define SPIWIFI ACK

First Test

OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

© Adafruit Industries

#include "Rdafruit NeoPix

7

9

https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

E/

iy

Manage Libraries...
Add ZIP Library...

Arduino libraries
ArduinoHttpClient
ArduinoSound

AudicZero

Page 33 of 48

https://github.com/adafruit/WiFiNINA/archive/master.zip

I[File] edit Sketch Tools Help

MNew Ctrl+M

Open... Ctrl+0

Open Recent

Sketchbook WiFil01 ’

Examples WiFININA AP_SimpleWebServer

Clase Crl+W RETIRED ConnectMoEncryption

Save CarleS Examples for Adafruit Metro Mg (SAM] 0o ENWEP

Save As... Ctrl+5Shift+5 25 ConnectWithWPA

. ScanMetworks

Page Setup Ctrl+Shift+P SAMD_AnalogCorrection TT———

Print Ctri+P :EIU SimpleWebServerWiki

Preferences Ctrl+ Comma USBHost Tools 4

Quit Cirl+Q Wire WiFiChatServer
L BT : WiFiPing

(https://adafru.it/EVu)

At the top you'll see a section where the GPIO pins are defined

/{ Configure the pins used for the ESP32 connection
#define SPIWIFI SPI // The SPI port

#define SPIWIFI_S5 10 // Chip select pin

#define SPIWIFI_ACKE 7 // a.k.a BUSY or RERDY pin
#define ESP32 RESETN 5 // BReset pin

#define ESP32 GPIOO -1 // Not connected

(https://adafru.it/EVV)

If you don't see this, you may have the wrong WiFiNINA library installed. Uninstall it and re-install the
Adafruit one as above.

Compile and upload to your board wired up to the AirLift

WiFi Scanning test

MAC: C4:4F:33:0E:B0:BD
Scanning available networks...
*% Scan Networks %%

number of available networks:10

0) Adafruit Signal: -56 dBm Encryption: WPAZ
1) Consulate Guest Signal: -589 dBm Encryption: WPAZ
2) consulatewireless Signal: -60 dBm Encryption: WPAZ
3) Adafruit Signal: -66 dBm Encryption: WPAZ
4} consulatewireless Signal: -&7 dBm Encryption: WPAZ
3) Consulate Guest Signal: -65 dBm Encryption: WPAZ
&) Adafruit Signal: -69 dBm Encryption: WPAZ
7) Consulate Guest Signal: -71 dBm Encryption: WPAZ
8) consulatewireless Signal: -72 dBm Encryption: WPAZ

9} ESP_EBEEF&C Signal: -75 dBm Encryption: HNone

(https://adafru.it/EVw)
If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply. You need a solid
3.3V into Vin in order for the ESP32 not to brown out.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 34 of 48

WiFi Connection Test

Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

Edit Sketch Tools Help
MNew Ctrl+M
Open... Ctrl+0
Open Recent WiFi101
Sketchbook WiFiNIMNA AP_SimpleWebServer
= RETIRED ConnectMNoEncryption
.) ConnectWithWEP
Close Crl+W Examples for Adafruit ItsyBitsy M4 (SAMD51)
ConnectWithWPA
Sawve Ctrl+5 25
. ScanMetworks
Save As... Ctrl+Shift+5 SAMD_AnalogCorrection
SpU ScanMetworksAdvanced
Page Setup Ctrl+Shift+P - SimpleWebServerWiFi
Print Ctrl+P Tools ¥
USBHost -
Preferences Ctrl+Comma Wire Clsisane
WiFiPing
Quit Ctrl+Q Examples from Custom Libraries WiFiSSLClient
FOCILIINE JriIwiry P
#define SPIWIFI SS HERR LT P WiFiUdpNtpClient
[#define SPIWIFI ZCK Adafruit AD51X15 WiFiUdpSendReceiveString
| #define ESP32 RESEIN Adafruit ADT7410 Library WiFiWebClient
#define ESP32 GPIOCO Adafruit ADXL343 WiFiWebClientRepeating
#endif Adafruit ADXL345 WiFiWebServer
AJ_E_ i AREVMIC k[

(https://adafru.it/EVX)

Open up the secondary tab, arduino_secrets.h. This is where you will store private data like the
SSID/password to your network.

arduino_secrets.h

kdefine SECEET SSID "your wifi ssid"
#define SECRET PASS "your wifi password”

(https://adafru.it/EVy)
You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the following. If not, go
back, check wiring, power and your SSID/password

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 35 of 48

Found firmware 1.3.0

Connected to wifi
S55ID: Adafruit
IFP Address: 10.0.1.179

connected to server
HTTR/1.1 200 OK

Content-Length: 73

Connection: close
ETag: "58a5e4B5-48"
Rccept-Ranges: bytes

(https://adafru.it/EVz)

Attempting to connect to SS5ID: Adafruit

signal strength (RS5I):-44 dBm
Starting connection to server...
Server: nginx/1.10.3 (Ubuntu)

Date: Wed, 10 Zpr 2019 20:55:31 GMT

Content-Type: text/html

Last-Modified: Thu, 16 Feb 2017 17:42:29 GMT

This is a test of the CC3000 module!
If you can read this, its working :)

dizconnecting from server.

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a great TLS/SSL
stack so you can have that all taken care of for you. Here's an example of a secure WiFi connection:

Edit Sketch Tools Help

Mew Ctrl+N
Open... Ctrl+0

Open Recent

Quit Ctrl+Q

Sketchbook

Examples

Close Ctrl+W

Save Ctrl+5

Save As... Ctrl+Shift+5
I Page Setup Ctrl+5Shift+P

Print Ctrl+P

Preferences Ctrl+ Comma

FOELIO= JELWICL

#define SPIWIFI_S5

#endif

vaid setup() {
(https://adafru.it/EVA)

Note we use WIFiSSLClient client; instead of WiFiClient client; to require an SSL connection!

© Adafruit Industries

|| #define SPIWIFI ACK
#define ESP32_RESETN
#define ESP32_GPIOD

Temboo
WiFil01
WiFiNINA
RETIRED

Examples for Adafruit ItsyBitsy M4 (SAMDS51)
25

SAMD_AnalogCorrection

sDu

SPI

USBHost

Wire

Examples from Customn Libraries
AccelStepper

Adafruit ADS1X15

Adafruit ADT7410 Library
Adafruit ADXL343

Adafruit ADXL345

Adafruit AM2315

AP_SimpleWebServer
ConnectMeEncryption
ConnectWithWEP
ConnectWithWPA
ScanMetworks
ScanMetworksAdvanced
SimpleWebServerWiFi
Tools

WiFiChatServer

WiFiPing
WiFiUdpMtpClient
WiFiUdpSendReceiveString
WiFiWebClient

WiFiWebClientRepeating
WiFiWebServer

d

https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

Page 36 of 48

—~—— — [E=EE S
@ COM161 (Adafruit ItsyBitsy M4 (SAMD51]) S

Attempting to connect to SSID: Adafruit
Connected to wifi

SSID: Adafruit

IF Address: 10.0.1.17%9

signal strength (RS5I):-52 dBm

Starting connection to server...

connected to server

HTTE/1.1 200 CK

cache-control: must-revalidate, max-age=e00
'content—dispositinn: attachment; filename=json.json
content-type: application/json;charset=utf-8
expires: Wed, 10 Apr 2019 21:17:24 GMT
last-modified: Wed, 10 Apr 2018 21:07:24 GMT
strict-transport-security: max-age=631138518

timing-allow-origin: *

x-connection-hash: ab5271363893fa0f3bb7779£f53ce57fae
x-content-type-options: nosniff

\[x-frame-options: SAMECRIGIN

x-response-time: 12

x-xss-protection: 1; mode=block; report=https://twitter.com/i/xss report
Content-Length: 187

kccept-Ranges: bytes

Date: Wed, 10 aApr 2019 21:07:24 GMT

Via: 1.1 warmnish

Zge: 0

Connection: close

K-Served-By: cache-bwiS0Z23-BWI

|[X-Cache: MISS

K-Timer: S51554930445.53460%96,Vs0,VE2ZS

Vary: Accept-Encoding

|[{"following":false, "id":"20731304", "screen name":"adafruit"”, "name":"adafruit industries", "proted

disconnecting from server.

ead 959 bytes
||

4 | 1 F

[¥7] Autoscral BothNL&CR v 115200baud + |

(https://adafru.it/EVB)
JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON data. We'll

use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can use and then display that data

on the serial port (which can then be re-directed to a display of some sort)
First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSSONdemo

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 37 of 48

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

Examples &

Close Ctrl+W WiFi101 '
Save Ctrles WiFiNIMNA AP_SimpleWebServer
Save As Ctrl+ Shift+S RETIRED ConnectMNoEncryption
< e ConnectWithWEP
. amples for Adafruit ItsyBitsy
Page Setup Ctrl+5hift+P bs S ConnectWithWPA
Print Ctrl+P . 1SOMdemo
SAMD_AnalogCorrection
Preferences Ctrl+Comma DU Scanhletworks
— ScanMetworksAdvanced
Quit curl+Q SimpleWebServerWiFi
USBHost

(https://adafru.it/EVC)

By default it will connect to to the Twitter banner image API, parse the username and followers and
display them.

ARttempting to connect to S5ID: Adafruit
Connected to wifi

SSID: ARdafruit

IF Address: 10.0.1.17%9

signal strength (RS5I):-51 dBm

Starting connection to server...
connected to server

Eesponse:

Twitter username: adafruit
Twitter followers: 159265

(https://adafru.it/EVD)

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples. Most of the sketches
included with the Adafruit fork of the WiFiNINA library above will have the pin mapping done for the
ItsyBitsies. For other examples the only change you'll want to make is at the top of the sketches, add:

#define SPIWIFI SPI // The SPI port

#define SPIWIFI SS 13 // Chip select pin

#define ESP32 RESETN 12 // Reset pin

#define SPIWIFI ACK 11 // a.k.a BUSY or READY pin
#define ESP32 GPIO0O -1

Note: These pin definitions leave the the ESP32's GPIOO pin undefined (-1). If you wish to use this pin -
solder the pad on the bottom of the Bitsy Add-on and set #define ESP32_GPIO0 to the correct pin for
your microcontroller. For the ltsyBitsies it will be D10/10

And then before you check the status() of the module, call the function WiFi.setPins(SPIWIFI_SS,
SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 38 of 48

// check for the WiFi module:
WiFi.setPins(SPIWIFI SS, SPIWIFI ACK, ESP32 RESETN, ESP32 GPI00, &SPIWIFI);
while (WiFi.status() == WL NO MODULE) {

Serial.println("Communication with WiFi module failed!");

// don't continue

delay(1000);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 39 of 48

Upgrade External ESP32 Airlift Firmware

To support BLE on the ESP32 AirLift, you'll need NINA_W102-1.7.1.bin or later.

External AirLift FeatherWing, Shield, or IltsyWing

External AirLift boards have three optional ESP32 control pins which are not connected by default:

® ESPGPIOO
® ESPRX
® ESPTX
0e00000
> S9300EE
& S,
29 - '
. 200 m Mo e
mg,Lh w a8 i
e a'x'.’s 3 0 DB w ﬁ
8888 ETMc =
000
Make sure to solder each of these pads together. You will
°® not be able to upload firmware to your ESP32 if they are not
00000000 0000000000
ﬁoog%g o0 0000
SPI via
3 y § %Uunzru
000000000
° 000000000

Air§gLift
000000000000 RIE336755
000000000000 GC-2X 94v-0
00000000000 3G
000000000000
\ 000000 00000000
CQO0000 OQCO000C0

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 40 of 48

https://learn.adafruit.com//assets/81533
https://learn.adafruit.com//assets/94694
https://learn.adafruit.com//assets/94695

Upload Serial Passthrough code for Feather or ItsyBitsy

First, back up any code and files you have on your CIRCUITPY drive . It will be overwritten by the code
you're going to upload to your board. You should not end up losing any files on the QSPI flash, but it's a
good idea to back them up anyways.

This section is only for an AirLift FeatherWing with a Feather M4, or an AirLift BitsyWing with an
ItsyBitsy M4. If you are using a different hardware combination - scroll down to the "External AirLift
Breakout" section.

Download the UF2 for your board to your Desktop.

https://adafru.it/OYF

https://adafru.it/OYF

https://adafru.it/PTE

https://adafru.it/PTE

https://adafru.it/IEK

https://adafru.it/IEK
Find the reset button on your board. It's a small, black button, and on most of the boards, it will be the only
button available.

ing \

Process

FeatherH

N N S

Ll
-
-
b
-
Y
; Py
-}
i
-
1€

il ly] =

Ealalalmisintigialols by laleln i

s 9/ (o) :(330 00 o) 3 O O O 030:0:0:0:0

Tap this button twice to enter the bootlader. f it doen't work on he firstry, dont b discouraged. The
rhythm of the taps needs to be correct and sometimes it takes a few tries.

Once successful, the RGB LED on the board will flash red and then stay green. A new drive will show up
on your computer. The drive will be called boardnameBOOT where boardname is a reference to your

specific board. For example, a Feather will have FEATHERBOOT and a Trinket will
have TRINKETBOOT etc. Going forward we'll just call the boot drive BOOT

> ! This PC
> wm FEATHERBOOT (Lv)
» Q Metwork

The board is now in bootloader mode. Now find the UF2 file you downloaded. Drag that file to the BOOT
drive on your computer in your operating system file manager/finder.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 41 of 48

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Airlift-Feather-FeatherWing-Passthru.UF2
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Adafruit-Feather-NRF52840-FeatherWing-Passthru.UF2
https://github.com/adafruit/Adafruit_Learning_System_Guides/raw/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Airlift-BitsyWing-FeatherWing-Passthru.UF2

PORTALBOOT

ns
[F] CURRENT.UF2

PORTAL... & B INDEX.HTM

Network B INFOUF2.TXT

F i PyPortal_ESP32_Passthru.UF2
et
= Dropbox

AirDrop
The lights should flash again, BOOT will disappear. Your board should re-enumerate USB and appear as ¢

COM or Serial port on your computer. Make a note of the serial port by checking the Device Manager
(Windows) or typing Is /dev/cu* or /dev/tty* (Mac or Linux) in a terminal.

If your board is listed in the terminal, proceed to the Uploading nina-fw with esptool section of this guide.

Edew‘m, Bluetooth- Incming-mgl!dwfm,usbmodmlflﬂm;l

External AirLift Breakout

You'll be turning your Arduino board into a USB to Serial converter. To do this, you'll need a special
Arduino sketch named SerialESPPassthrough.ino and an Arduino-compatible board with Native USB
support such as the Adafruit Metro M4.

You will also need to make the following connections between the board and the AirLift Breakout:

Board Pin 12 to ESP32_ResetN
Board Pin 10 to ESP32 GPIOO
Board TX to RXI

Board RX to TXO

Click Download: Project ZIP to download the code below.

/*
SerialNINAPassthrough - Use esptool to flash the ESP32 module
For use with PyPortal, Metro M4 WiFi...

Copyright (c) 2018 Arduino SA. All rights reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

#include <Adafruit NeoPixel.h>

unsigned long baud = 115200;

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 42 of 48

#1f defined (ADAFRUIT FEATHER M4 EXPRESS) || \
defined (ADAFRUIT FEATHER MO EXPRESS) || \
defined (ARDUINO AVR FEATHER32U4) || \
defined (ARDUINO NRF52840 FEATHER) || \
defined (ADAFRUIT ITSYBITSY M0) || \
defined (ADAFRUIT ITSYBITSY M4 EXPRESS) || \
defined (ARDUINO AVR ITSYBITSY32U4 3V) || \
defined (ARDUINO NRF52 ITSYBITSY)
// Configure the pins used for the ESP32 connection
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 13 // Chip select pin
#define ESP32 RESETN 12 // Reset pin
#define SPIWIFI ACK 11 // a.k.a BUSY or READY pin
#define ESP32 GPIOO 10
#define NEOPIXEL PIN 8
#elif defined (ARDUINO AVR FEATHER328P)
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 4 // Chip select pin
#define ESP32 RESETN 3 // Reset pin
#define SPIWIFI ACK 2 // a.k.a BUSY or READY pin
#define ESP32 GPIOO -1
#define NEOPIXEL PIN 8
#elif defined(TEENSYDUINO)
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 5 // Chip select pin
#define ESP32 RESETN 6 // Reset pin
#define SPIWIFI ACK 9 // a.k.a BUSY or READY pin
#define ESP32 GPIOO -1
#define NEOPIXEL PIN 8
#elif defined (ARDUINO NRF52832 FEATHER)
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 16 // Chip select pin
#define ESP32 RESETN 15 // Reset pin
#define SPIWIFI ACK 7 // a.k.a BUSY or READY pin
#define ESP32 GPIOO -1
#define NEOPIXEL PIN 8
#elif !defined(SPIWIFI SS) // if the wifi definition isnt in the board variant
// Don't change the names of these #define's! they match the variant ones
#define SerialESP32 Seriall
#define SPIWIFI SPI
#define SPIWIFI SS 10 // Chip select pin
#define SPIWIFI ACK 7 // a.k.a BUSY or READY pin
#define ESP32 RESETN 5 // Reset pin
#define ESP32 GPIOO -1 // Not connected
#define NEOPIXEL PIN 8
#endif

#if defined (ADAFRUIT PYPORTAL)
#define PIN NEOPIXEL 2

#elif defined (ADAFRUIT METRO M4 AIRLIFT LITE)
#define PIN NEOPIXEL 40

#endif

Adafruit NeoPixel pixel = Adafruit NeoPixel(1l, PIN_NEOPIXEL, NEO GRB + NEO KHZ800);

void setup() {
Serial.begin(baud);
pixel.begin();
pixel.setPixelColor(0, 10, 10, 10); pixel.show();

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

Page 43 of 48

while (!Serial);
pixel.setPixelColor(0, 50, 50, 50); pixel.show();

delay(100);
SerialESP32.begin(baud);

pinMode (SPIWIFI_SS, OUTPUT);
pinMode (ESP32_GPIOO, OUTPUT);
pinMode (ESP32_RESETN, OUTPUT);

// manually put the ESP32 in upload mode
digitalWrite(ESP32 GPI00, LOW);

digitalWrite(ESP32 RESETN, LOW);

delay(100);

digitalWrite(ESP32 RESETN, HIGH);
pixel.setPixelColor(0, 20, 20, 0); pixel.show();
delay(100);

void loop() {
while (Serial.available()) {
pixel.setPixelColor(0, 10, 0, 0); pixel.show();
SerialESP32.write(Serial.read());

while (SerialESP32.available()) {
pixel.setPixelColor(0, 0, 0, 10); pixel.show();
Serial.write(SerialESP32.read());

}

Code Usage

Unzip the file, and open the SerialESPPassthrough.ino file in the Arduino IDE.

If you're using the AirLift FeatherWing, AirLift Shield or AirLift Bitsy Add-On, use the PassThrough UF2
instructions above

If you have an AirLift Breakout (or are manually wiring up any of the boards above), change the following
pin definitions in the sketch to match your wiring:

#elif !defined(SPIWIFI SS) // if the wifi definition isnt in the board variant
// Don't change the names of these #define's! they match the variant ones
#define SerialESP32 Seriall
#define SPIWIFI SPI
#define SPIWIFI SS 10 // Chip select pin
#define SPIWIFI_ ACK 7 // a.k.a BUSY or READY pin
#define ESP32 RESETN 5 // Reset pin
#define ESP32_GPIOO -1 // Not connected
#define NEOPIXEL PIN 8

#endif

Using the Arduino IDE, upload the code to your board (Sketch->Uploaq).
After uploading, the board should enumerate USB and appear as a COM or Serial port on your computer.

Make a note of the serial port by checking the Device Manager (Windows) or typing in s

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 44 of 48

/dev/cu* or /dev/tty* (Mac or Linux) in a terminal

|fdevfcu.Bluetooth—Incoming—PortIfdevlcu.usbmodeml4322@!|

This guide assumes you have Python3 installed. If you have not installed it, navigate to the Python
downloads page (https://www.python.org/downloads) and install the latest release.

Install esptool.py
Esptool is an application which can communicate with the ROM bootloader (https://adafru.it/LKe) in

Espressif chips.

To install esptool, run the following in your terminal:

pip3 install esptool

B pip3 install esptool
Collecting esptool
Using cached esptool-2.8.tar.gz (84 kB)
Requirement already satisfied: pyserial>=3.@ in ./.pyenv/versions/3.7.2/lib/pyth
on3.7/site-packages (from esptool) (3.4)
Collecting pyaes
Using cached pyaes-1.6.1.tar.gz (28 kB)
Collecting ecdsa
Using cached ecdsa-0.15-py2.py3-none-any.whl (100 kB)
Requirement already satisfied: si .9.8 in ./.pyenv/versions/3.7.2/1ib/python3
.7/site-packages (from ecdsa—=esptool) (1.14.0)
Using legacy setup.py install for esptool, since package 'wheel' is not installe
d.
Using legacy setup.py install for pyaes, since package 'wheel' is not installed.
Installing collected packages: pyaes, ecdsa, esptool
Running setup.py install for pyaes ... done
Runnlng 3Ptup py install for Psptool ... done

Burning nina-fw W|th esptool

Click the link below to download the latest nina-fw .bin file. Unzip it and save the .bin file to your desktop

https://adafru.it/G3D

https://adafru.it/G3D
If you're using macOS or Linux - run the following command, replacing /dev/ttyACMO with the serial port
of your board and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32.

esptool.py --port /dev/ttyACMO --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin

If you're using Windows - run the following command, replacing COM7 with the serial port of your board
and NINA W102-1.6.0 with the binary file you're flashing to the ESP32

esptool.py --port COM7 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin
The command should detect the ESP32 and will take a minute or two to upload the firmware.

If ESPTool doesn't detect the ESP32, make sure you've uploaded the correct .UF2 file to the bootloader
and are using the correct serial port.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 45 of 48

https://www.python.org/downloads
https://learn.adafruit.com/bootloader-basics
https://github.com/adafruit/nina-fw/releases/latest

$ esptool.py --po
esptool.py v2.7
Serial port /dev/cu.usbmodem1432201

Detecting chip type... ESP32

Chip is ESP32D@NWDQ6 (revision 1)

Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
Crystal is 4@MHz

MAC: c4:4f:33:0d:5c:19

Uploading stub...

Running stub...

Stub running...

Configuring flash size...

Auto-detected Flash size: 4MB

Compressed 1154048 bytes to 622216...

Wrote 1154848 bytes (622216 compressed) ot Ox00088000 in 204.7 seconds (effective 45.1 kbit/s)...
Hash of data verified.

Leaving. ..
Hard resetting via RTS pin...

Once the firmware is fully uploaded, the ESP32 will reset.

Veritying the Upgraded Firmware Version

To verify everything is working correctly, we'll load up either an Arduino sketch or CircuitPython code. At
this point, you must desolder the connections between the Optional ESP32 control pins you made
earlier using a solder sucker (https://adafru.it/FWKk) or a bit of solder wick (https://adafru.it/yrC).

Arduino
If you were previously using your ESP32 with Arduino, you should load up an Arduino sketch to verify

everything is working properly and the version of the nina-fw correlates with the version the sketch reads.
Open up File->Examples->WiFiNINA->ScanNetworks and upload the sketch. Then, open the Serial
Monitor. You should see the firmware version printed out to the serial monitor.

o Jdevfcu.usbmodem1412301 (Adafruit PyPortal M4 (SAMDS1))

Send

WiFi Scanning test

1.3.0 <= New Firmware Version

Firmware 0K

MAC: C4:4F:33:0D:5C:19

Scanning available networks...

** Scan Networks **

number of available networks:1@

@) DreamingDoing Signal: -58 dBm Encryption: WPAZ
1) MySpectrumWiFic@-2G Signal: -66 dBm Encryption: WPAZ
2) Reina_2GEXT 5Signal: -74 dBm Encryption: WPAZ

3) TGle72GD2 Signal: -74 dBm Encryption: WPAZ

4) MySpectrumiWiFi75-2G Signal: -77 dBm Encryption: WPAZ
5) MySpectrumiWiFiBa-2G Signal: -77 dBm Encryption: WPAZ

CircuitPython

If you were previously using your ESP32 project with CircuitPython, you'll need to first reinstall
CircuitPython firmware (UF2) for your board. The QSPI flash should have retained its contents. If you don't
see anything on the CIRCUITPY volume, copy files from the backup you made earlier to CIRCUITPY .

To verify the new ESP32 WiFi firmware version is correct, follow the Connect to WiFi step in this
guide (https://adafru.it/Eao) and come back here when you've successfully ran the code. The REPL output
should display the firmware version you flashed.

code.py output:
ESP32 SPI webclient test

ESP32 found and in idle mode ”

Firmware vers. bytearray(b'l.3.0\x@@')
MAC addr: ['@x19', '@x5c', '@xd', '@x33', 'Ox4f', '@xcd']

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 46 of 48

https://www.adafruit.com/product/148
https://www.adafruit.com/product/149
https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4

Downloads

Files
® NINA-W102 ESP32 Module Datasheet (https://adafru.it/FJY)
® EagleCAD files on GitHub (https://adafru.it/FJZ)
® Fritzing object in Adafruit Fritzing Library (https://adafru.it/FJ-)

Schematic

POWER AND FILTERING

o0 { RGB LED Opt. Crypto Chip

£

ADAFRUIT INDUSTRIES & @
TITLE

REV

DATE [orG Ne
as4/19 11:54 A .

FILE: BitsyAirliftHing Rev C1_____ | PABE: 171

Fab Print

-
C1r 8t Bt =ulling
- - - [

P =

H-s B AR L T

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor Page 47 of 48

https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_%2528UBX-17065507%2529.pdf
https://github.com/adafruit/Adafruit-Airlift-Bitsy-Add-On-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Airlift%20Bitsy%20Add-On.fzpz

© Adafruit Industries Last Updated: 2021-03-29 01:04:51 PM EDT Page 48 of 48

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI and Control Pins
	RGB LED

	Assembly
	CircuitPython WiFi
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	OLD - CircuitPython WiFi
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	CircuitPython BLE
	CircuitPython BLE UART Example
	Adafruit Airlift Bitsy ESP32 Add-On Wiring
	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	Copy and Adjust the Example Program
	Talk to the AirLift via the Bluefruit LE Connect App
	Arduino WiFi
	Library Install
	First Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo
	Adapting Other Examples

	Upgrade External ESP32 Airlift Firmware
	External AirLift FeatherWing, Shield, or ItsyWing
	Upload Serial Passthrough code for Feather or ItsyBitsy

	External AirLift Breakout
	Code Usage
	Install esptool.py

	Burning nina-fw with esptool
	Verifying the Upgraded Firmware Version
	Arduino
	CircuitPython

	Downloads
	Files

	Schematic
	Fab Print

